Synthesis of 14,17-propano analogues of estradiol

J ames R. B ull,* C larissa H oadley, P ia G. M ountford and Lynne M . Steer
Department of Chemistry, U niversity of Cape Town, R ondebosch 7700, South A frica

Stereocontrolled syntheses of the $14 \alpha, 17 \alpha$-propano and $14 \beta, 17 \beta$-propano analogues of estradiol are described, together with those of numerous derivatives in which additional functionality is incorporated into the bridged system. Intramolecular aldol condensation of 17β-acetoxy-3-methoxy-20-oxo-19-nor17 α-pregna-1,3,5(10)-triene-14-carbaldehyde 1 furnishes 3 -methoxy-17 ${ }^{1}$-oxo-14,17 α-prop-17 ${ }^{2}$-enoestra-$1,3,5(10)$-trien-17 β-yl acetate 2 , which is transformed into $14,17 \alpha$-propanoestra-1,3,5(10)-triene-3,17 β-diol 17. In the first of two synthetic approaches to the $14 \beta, 17 \beta$-propano series, cycloaddition of methyl propiolate to 3 -methoxyestra-1,3,5(10),14,16-pentaen-17-yl acetate 25 gives a 14,17-bridged intermediate 26, in which the latent propyne equivalency of the dienophile is elaborated through selective functional group transformations to give 17-acetoxy-3-methoxy-20-oxo-19-nor-14ß-pregna-1,3,5(10)-triene-14carbaldehyde 50 and the derived product 52 of intramolecular aldol condensation. The second approach entails regioselective functionalisation of 14-allyl-3-methoxy-14ß-estra-1,3,5(10)-trien-17-one 54 at C-2' or C-3' to give intermediates for intramolecular closure between the chain terminus and $\mathrm{C}-17$, leading to $14,17 \beta$-propano-14 β-estra-1,3,5(10)-triene-3,17 α-diol 64 . The results of competitive binding assays of the hormone analogues 17 and 64 toward the estradiol receptor are reported, and compared with those of bridge-functionalised derivatives.

The quest for new predictive design principles in steroid hormone research gained impetus with the discovery that $14 \alpha, 17 \alpha-$ ethano analogues of estradiol ${ }^{1,2}$ and estriol ${ }^{3,4}$ bind efficiently to the estrogen receptor and display potent oral estrogenicity. This invites speculation upon the possible role of the 14,17ethano bridge in bestowing resistance to metabolic degradation, whilst enabling receptor binding to proceed without evident steric impediment. A n attendant question is whether alteration of the bridge size might influence this property. The $14 \alpha, 17 \alpha$ - and $14 \beta, 17 \beta$-propano analogues of estradiol appeared to be synthetic candidates of particular interest, since modelling studies reveal subtle changes in the spatial disposition of polar functionality at $\mathrm{C}-3$ and $\mathrm{C}-17$ and in the steric environment of the 17-hydroxy group, associated with introduction of epimerically differentiated 14,17-propano bridges. A comparison of the receptor binding affinities of these targets was therefore expected to provide further insight into structureactivity relationships in ring D bridged analogues of estradiol, and possible pointers to predictive design of new targets in which binding affinity is optimised.

In this paper we describe stereocontrolled syntheses of 14,17 α-propanoestra-1,3,5(10)-triene-3,17 β-diol 17 and $14,17 \beta$ -propano-14 β-estra-1,3,5(10)-triene-3,17 α-diol $64,{ }^{5,6}$ as well as a number of bridge-functionalised derivatives of these parent systems. These products have been subjected to binding affinity and detailed structural studies.

Results and discussion

Synthesis of the $14 \alpha, 17 \alpha$-propano series

A simple synthetic strategy for assembly of a $14 \alpha, 17 \alpha$-propano bridge was suggested by the availability of 17β-acetoxy- 3 -methoxy-20-oxo-19-nor-17 α-pregna-1,3,5(10)-triene-14-carbaldehyde $1,{ }^{7}$ in which the propitious array of ring D functionality was expected to lend itself to intramolecular aldol reaction, and conversion of the resultant $14 \alpha, 17 \alpha$-bridged intermediate into the desired hormone analogues.

Indeed, treatment of compound $\mathbf{1}$ with hydrochloric acid in tetrahydrofuran (THF) at $50^{\circ} \mathrm{C}$ resulted in near-quantitative conversion into the bridged enone 2, the structure of which was evident from diagnostic spectroscopic data and rigorous struc-

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{HCI}, \mathrm{THF}, 50^{\circ} \mathrm{C}$ (to 2); $\mathrm{ii}, \mathrm{KOH}$, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}$; iii, LiAIH $4, \mathrm{THF}, 25^{\circ} \mathrm{C}$; iv, DIBAH, C $\mathrm{C}_{5} \mathrm{M}$ e, reflux; v, $\mathrm{Pd}-\mathrm{C}(10 \%), \mathrm{H}_{2}$; vi, $\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{2}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{HOAc}, 30^{\circ} \mathrm{C}$; vii, N a, liquid NH_{3}
tural elucidation of derived products. Intramolecular aldol reaction of compound 1 also proceeded in the presence of alkali, to give the product $\mathbf{3}$ arising from concomitant bridgehead hydrolysis, but accompanied by isomeric material which
was also detected during alkaline hydrolysis of compound 2. A lthough this product proved difficult to separate chromatographically, its presence was inferred from NM R spectroscopy of the reaction products. ${ }^{5}$ The further implications of this interfering reaction will be reported elsewhere.

Reduction of the enone 2 with lithium aluminium hydride (LAH) in THF at $25^{\circ} \mathrm{C}$ gave a separable mixture ($\sim 3: 2$) of the isomeric diols $\mathbf{4}$ and 5 arising from exclusive 1,2-addition of hydride. The configurational assignments were deduced from NMR data, which revealed significant coupling ($\mathrm{J}_{17^{1}, 17^{2}} 4.1$ Hz) in the $17 \beta, 17^{1} \mathrm{R}$-diol 4, consistent with a pseudo-axial (exo) orientation of $17^{1}-\mathrm{OH}$, whereas the $17 \beta, 17^{1} \mathrm{~S}$-diol 5 displayed the vicinal (${ }_{17^{1}, 17^{2}} 2 \mathrm{~Hz}$) and allylic ($\mathrm{J}_{17^{1}, 17^{7}} 1.6 \mathrm{~Hz}$) couplings expected for a pseudo-equatorial (endo) substituent at $\mathrm{C}-17^{1}$. The surprisingly slight preference for endo-entry of hydride in $\mathbf{2}$ suggests very little steric differentiation in reagent approach. The diols 4 and 5 were deprotected [diisobutylaluminium hydride (DIBAH) in refluxing toluene ${ }^{8}$] at $C-3$, to give the respective triols 6 and 7.
F urther simplification of bridge functionality in the enone $\mathbf{2}$ was achieved through catalytic hydrogenation ($\mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$) to give the saturated 17^{1}-ketone 8 , LAH reduction of which was highly stereoselective giving only the $17 \beta, 17^{1} \mathrm{R}$-diol 9 ; the N M R signal for $17^{1}-\mathrm{H}$ appeared at $\delta 4.2(\mathrm{t}, \mathrm{J} 2 \times 3 \mathrm{~Hz})$ consistent with axial (exo) orientation of $17^{1}-\mathrm{OH}$ and hence, exclusive endodirected hydride addition. Correlation of 9 with the unsaturated $17 \beta, 17^{1 R}$-diol 4 was established through comparison with the product of catalytic hydrogenation of the latter, albeit in poor yield owing to unexplained rearrangements. By contrast, catalytic hydrogenation of the unsaturated $17 \beta, 17^{1} S$-diol 5 proceeded smoothly, to give the saturated product 11. The parent hormone analogues $\mathbf{1 0}$ and 12 were prepared via conventional 3 -deprotection of 9 and 11 , respectively.
The remaining objective in this phase of the investigation was to prepare the parent $14 \alpha, 17 \alpha$-propano analogue of estradiol. The most direct approach appeared to be via 17^{1}-deoxygenation of the enone 2. Inexplicably, attempted dithioketalisation of $\mathbf{2}$ (ethanedithiol-boron trifluoride-diethyl ether complex, $30^{\circ} \mathrm{C}$) failed. A pparently this is associated with the presence of the bridgehead acetoxy group, since the saturated 17β-acetoxy 17^{1} ketone 8 behaved similarly, but the 17β-hydroxy enone 3 underwent slow but clean conversion into the corresponding $17^{1}, 17^{1}$-dithioketal 13 . Desulfurisation of 13 proceeded smoothly in the presence of sodium-liquid ammonia to give the bridged olefin 14, which underwent catalytic hydrogenation to give the $14 \alpha, 17 \alpha$-propano compound 16 . Deprotection of 14 and 16 at C-3 furnished the corresponding bridged estradiol analogues $\mathbf{1 5}$ and 17 , respectively.

The foregoing synthetic sequence commended itself as a straightforward route to the target hormone analogues for evaluation purposes, but a necessary caveat is that the synthetic route to the pivotal intermediate $\mathbf{1}$ is flawed by imperfect stereoselectivity in the cycloaddition step. ${ }^{7} \mathrm{M}$ ore direct and efficient access to $14 \alpha, 17 \alpha$-propano systems can be envisaged through the synthesis of 14α-alkyl 17 -ketones in which a suitably functionalised three-carbon chain at C-14 can be primed for intramolecular $3^{\prime}, 17$-closure. Our preliminary studies toward these objectives will be reported elsewhere.

Synthesis of the $14 \beta, 17 \beta$-propano series

The successful completion of the foregoing synthetic route invited consideration of the scope for implementing an analogous synthetic strategy for the $14 \beta, 17 \beta$-propano series. The prerequisites would be ready access to the key intermediate C (a 14,17-epimer of 1) via oxidative cleavage of the bridged precursor \mathbf{D}, and the reasonable presumption of comparable functional group reactivity implicit in the retrosynthetic step ($\mathbf{A} \Rightarrow \mathbf{B}$, Scheme 2).
The fortuitous availability of the phenylsulfonyl compound $\mathbf{1 8}$, as the 'undesired' cycloadduct in the reaction sequence lead-

B

D
C

Scheme 2 Oxidative cleavage-intramolecular aldol condensation pathway to $14 \beta, 17 \beta$-propanoestradiol
ing to compound $\mathbf{1}^{7}$, offered scope for testing the feasibility of the outlined approach. Earlier experiments ${ }^{9}$ had demonstrated the impracticality of converting 18 into a 16 -methyl $-\Delta^{15}$ intermediate \mathbf{D} via direct reductive desulfonylation, owing to unacceptably high levels of attendant olefinic bond participation. A ccordingly, it was decided to postpone this step until this source of intramolecular interference had been eliminated through necessary functionalisation of the olefinic bond.
cis-Hydroxylation of compound $\mathbf{1 8}\left(\mathrm{OsO}_{4}\right.$-pyridine, $25^{\circ} \mathrm{C}$) proceeded slowly (168 h) but highly stereoselectively to give a single diol 19 (Scheme 3), confidently assigned a $15 \beta, 16 \beta-$

23

24

Scheme 3 Reagents and conditions: i, $\mathrm{OsO}_{4}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 25^{\circ} \mathrm{C}$; ii, NalO_{4}, EtOH-H $\mathrm{O}, 20^{\circ} \mathrm{C}$; iii, $\mathrm{Sml}_{2}, \mathrm{H}$ M PA, THF, $-20^{\circ} \mathrm{C}$; iv, M e $\mathrm{e}_{2} \mathrm{CO}, \mathrm{HClO}_{4}$ (70%), $20^{\circ} \mathrm{C}$
configuration owing to the severe steric congestion on the endoface of the olefinic bond. The feasibility of oxidative cleavage at this stage was demonstrated by treatment of the diol 19 with sodium periodate in aqueous ethanol to give the dioxo com-
pound $\mathbf{2 0}$, further elaboration of which was deemed impractical owing to the plethora of ring D functionality. Instead, reductive desulfonylation of the diol 19 was attempted; reaction with samarium(II) iodide-H M PA ${ }^{10}$ at $-20^{\circ} \mathrm{C}$ proceeded slowly (4h) to give a mixture ($\sim 1: 1$) of products 21 and 22 . The less polar product was formulated as the $15 \alpha, 17^{2}$-cyclo-14 $\alpha, 17 \alpha$-ethano compound 21, based upon N M R evidence for the presence of a cyclopropyl moiety and the absence of a secondary hydroxy group, whereas the properties of the more polar product were clearly consistent with the desulfonylated $15 \beta, 16 \beta$-diol 22 . The unexpected intrusion of an apparent participation process here, was circumvented by prior conversion of the diol 19 into the acetonide 23, which underwent efficient reductive desulfonylation to the expected product $\mathbf{2 4}$, deprotection of which to the diol $\mathbf{2 2}$ is described below.

A though these experiments demonstrated the feasibility of the planned approach, it was evident that a practical synthetic strategy would require a more direct method for preparation of the diol 22 or the precursor olefin D (Scheme 2). This, in turn, necessitated development of a plan for cycloaddition of a latent propyne equivalent to the dienyl acetate $\mathbf{2 5}$, which could lead via selective functional group modification to such an intermediate.

The potential of methyl propiolate to serve this purpose is implied in an earlier study upon a steroidal ring D diene, ${ }^{11}$ in which the crucial steps demonstrated appropriate regioselectivity during cycloaddition, and chemoselective hydrogenation of the isolated olefinic bond in the primary cycloadduct.

Treatment of the dienyl acetate 25^{1} with methyl propiolate in benzene at $100^{\circ} \mathrm{C}$ (sealed tube, 23 h) resulted in efficient formation of a single cycloadduct 26 (85%) (Scheme 4), the structure of which was assigned by well-established analogy. ${ }^{11}$ Catalytic hydrogentation ($\mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$) proceeded chemoselectively to give the $14 \alpha, 17 \alpha$-ethano compound 27 (83%). Initial attempts to convert 27 into the 16 -hydroxymethyl- Δ^{15} -
compound for subsequent 16^{1}-deoxygenation were frustrated by negligible 1,2-regioselectivity during hydride reduction of the α, β-unsaturated ester grouping, under a variety of reaction conditions. Consequently, it was decided to postpone the necessary conversion of the 16-methoxycarbonyl group into a methyl group, and 27 was first osmylated to give a readily separable mixture ($\sim 7: 3$) of 15,16 -diols 28 and 29, distinguished by the diagnostic four-bond coupling between $15 \beta-\mathrm{H}$ and $17^{2}-\mathrm{H}_{\text {exo }}$ (${ }^{4}$) 1.5 Hz) in the $15 \alpha, 16 \alpha$-isomer 28. The conversion of these 16 -methoxycarbonyl 15,16 -diols into the corresponding 16 methyl 15,16 -diols necessitated conventional multi-step reaction sequences.
Thus, the major isomer 28 was first protected as the acetonide 30, whereupon sequential LAH reduction (to 31), selective 16^{1}-methanesulfonylation (to 32), LAH reduction (to 33), 17acetylation (to 34) and finally, acetonide deprotection gave the desired 16β-methyl $15 \alpha, 16 \alpha$-diol 35 in an overall yield of ca. 25\% from 28.
An analogous reaction sequence upon the minor isomer $29(\longrightarrow \mathbf{3 7} \longrightarrow \mathbf{3 8} \longrightarrow \mathbf{3 9} \longrightarrow \mathbf{4 0} \longrightarrow \mathbf{2 4})$ proceeded unexceptionally and as efficiently, to give the intermediate acetonide 24, identical with that obtained during reductive desulfonylation of 19. However, deprotection of $\mathbf{2 4}$ with iodine in methanol-THF ${ }^{12}$ at $80^{\circ} \mathrm{C}$ furnished an inseparable mixture ($\sim 1.8: 1$ by NM R) of the 17β-acetoxy $15 \beta, 16 \beta$-diol 22 and the 15β-acetoxy $16 \beta, 17 \beta$-diol 41 ; the latter compound was isolated and characterised as the unreactive component in a subsequent reaction upon the mixture, and the structure was further inferred from treatment of the mixture $\mathbf{2 2}+\mathbf{4 1}$ with LAH to give the triol 42 as a common product of hydrolysis.
It is evident that this two-fold trans-acetylation of $\mathbf{2 2}$ to give 41 requires a bridgehead-exo relationship of interacting functionality during the first step, since an analogous process was not observed during similarly mediated deprotection of the isomeric acetonide 34.

Scheme 4 Reagents and conditions: i, $\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}, \mathrm{C}_{6} \mathrm{H}_{6}, 100^{\circ} \mathrm{C}$; ii, $\mathrm{Pd}-\mathrm{C}(10 \%), \mathrm{H}_{2} ;$ iii, $\mathrm{OsO}_{4}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 25^{\circ} \mathrm{C}$; iv, $\mathrm{Me} \mathrm{e}_{2} \mathrm{CO}, \mathrm{HClO} 4(70 \%), 20^{\circ} \mathrm{C}$; v,
 EtOH-H2O, $20^{\circ} \mathrm{C}$; xi, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{C}_{6} \mathrm{H}_{6}, 115{ }^{\circ} \mathrm{C}$; xii, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}$; xiii, $\mathrm{HCl}, \mathrm{THF}, 57^{\circ} \mathrm{C}$ or p -TsOH, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux

Scheme 5 Reagents and conditions: i, $\mathrm{PdCl}_{2}, \mathrm{CuCl}, \mathrm{O}_{2}, \mathrm{DMF}-\mathrm{H}_{2} \mathrm{O}, 65^{\circ} \mathrm{C}$; ii, $\mathrm{KOH}, \mathrm{MeOH}, 20^{\circ} \mathrm{C}$; iii, LiAlH $, ~ \mathrm{THF}, 0^{\circ} \mathrm{C}$; iv, DIBAH, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}$, reflux; v, $\left(\mathrm{CH}_{2} \mathrm{SH}\right)_{2}, \mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$; vi, R aney-Ni, EtOH, reflux; vii, p-TsNHNH$, \mathrm{TFA}, \mathrm{THF}, 20^{\circ} \mathrm{C}$; viii, BuLi, $\mathrm{THF}, 0^{\circ} \mathrm{C}$; ix, $\mathrm{BH} \mathrm{B}_{3} \cdot \mathrm{Me} \mathrm{e}_{2} \mathrm{~S}$, THF , reflux, then $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, 40^{\circ} \mathrm{C}$; x, $(\mathrm{COCl})_{2}, \mathrm{DM} \mathrm{SO}, \mathrm{THF},-70^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N},-78$ to $20^{\circ} \mathrm{C}$; xi, $\mathrm{TiCl}_{3} \cdot(\mathrm{DME})_{1.5}, \mathrm{Zn}-\mathrm{Cu}, 20^{\circ} \mathrm{C}$; xii, $\mathrm{Ac}_{2} \mathrm{O}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 20^{\circ} \mathrm{C}$

A lthough the foregoing reaction sequences succeeded in furnishing the targeted intermediates $\mathbf{2 2}$ and $\mathbf{3 5}$ for oxidative cleavage (to C, Scheme 2), the need to process the isomeric diols 28 and 29 separately, and the complications attending functional group manipulation of the latter isomer 29, detracted from the overall efficiency of the method, and an alternative approach to elaborating the propyne equivalency implicit in the key intermediate 27 was sought.

This was readily achieved via conjugate phenylthiolation ${ }^{13}$ of 27, which proceeded efficiently and stereoselectively ${ }^{14}$ in the presence of thiophenol-diisopropylethylamine at $20^{\circ} \mathrm{C}$ to give the 15α-phenylthio 16β-carboxylate 43 . The 15,16 -trans relationship of functionality, crucial for the success of subsequent steps, was evident from NMR signals for $15 \beta-H$ and $16 \alpha-\mathrm{H}$ which revealed $\mathrm{J}_{15,16 \alpha} 5.6 \mathrm{~Hz}$, and the presence of a four-bond coupling, $\mathrm{J}_{15 \mathrm{~s}, 17^{2} \text { exo }} 2.5 \mathrm{~Hz}$ confirmed the configuration at $\mathrm{C}-15$. A three-step reduction-mesylation-reductive deoxygenation sequence (via 44 and 45) proceeded smoothly to give the corresponding 16β-methyl compound 46 in high yield (78\% from 43). The derived sulfoxide 47 underwent smooth syn-elimination at $115^{\circ} \mathrm{C}$ in the presence of triethylamine to give the olefin 48, thus fulfilling the objective of conferring effective propyne equivalency on methyl propiolate cycloaddition to the dienyl acetate 25.
cis-Hydroxylation of $\mathbf{4 8}$ (to $\mathbf{3 6}+\mathbf{4 2}$) and of the derived 17acetate $\mathbf{4 9}$ (to $\mathbf{2 2}+\mathbf{3 5}$) completed the preferred synthetic routes to the key intermediates for oxidative cleavage. Treatment of 22 (or mixtures of $22+35$) with sodium periodate in aqueous ethanol gave 17-acetoxy-3-methoxy-20-oxo-19-nor14β-pregna-1,3,5(10)-triene-14-carbaldehyde $\mathbf{5 0}^{15}$ in high yield whereas similar oxidative cleavage of the $15,16,17$-triols 36 and 42 proceeded with high 15,16 -regioselectivity to give the corresponding 17-hydroxy 14β-carbaldehyde 51 .

Intramolecular aldol reaction of $\mathbf{5 0}$ was readily achieved in
the presence of hydrochloric acid in THF at $57^{\circ} \mathrm{C}$ to give the expected bridged enone 52 , whereas treatment with p -TsOH in refluxing benzene resulted in concomitant bridgehead hydrolysis to give 53.
The foregoing reaction sequence thus succeeded in demonstrating preparative and structural analogy with the corresponding 14,17-isomeric series, but preliminary experiments revealed poor regioselectivity during attempted functional group modification of 52. The need to explore this problem in more depth was overtaken by the development of an alternative and more amenable strategy for the synthesis of the $14 \beta, 17 \beta$ propano analogues of estradiol, based upon regioselective modification of the readily available 14β-allyl 17-ketone 54 . 3
Thus, Wacker oxidation ${ }^{16}$ of 54 led readily to the 14β acetonyl 17-ketone 55 (70\%), which underwent an intramolecular aldol reaction in the presence of alkali, to give the $14 \beta, 17 \beta$-(17^{2}-oxopropano) compound 57 (70%) accompanied by minor amounts (6%) of the alternative aldol closure product 56 as a mixture ($\sim 2: 1$ by NMR) of 16^{1}-epimers. LAH reduction of 57 proceeded in accordance with expectations for a bicyclo[3.2.1]octan-2-one system, to give a separable mixture $(\sim 2: 3)$ of axial and equatorial 17^{2}-alcohols 58 and 59 , which were converted into the respective hormone analogues 60 and 61.

The primary purpose of this phase of the investigation was served through 17^{2}-deoxygenation of the bridged intermediate 57. The method of choice entailed dithioketalisation of 57 in the presence of zinc trifluoromethanesulfonate as catalyst, ${ }^{17}$ which ensured conditions sufficiently mild for preparation of the ethylenedithio derivative 62 without interference from retro aldol cleavage of the bridge. Desulfurisation of 62 in the presence of Raney nickel furnished the $14 \beta, 17 \beta$-propano compound 63 , which was deprotected to give the estradiol analogue 64.

A complementary 17^{2}-deoxygenation routine provided access to $14 \beta, 17 \beta$-propeno analogues. Thus, the ketone 57 was converted into a separable syn/anti mixture ($\sim 2: 1$) of the 17^{2} tosylhydrazones 65 , treatment of which with butyllithium gave the separable unsaturated products 66 and 67 . Deprotection of these products at C-3 furnished the respective estradiol analogues 68 and 69 . The spectroscopic properties of 66 and 67 were remarkably similar, and failed to furnish irrefutable evidence of their respective structures. H owever, an unambiguous synthesis of the 17^{1}-olefin 66^{6} was decisive for this purpose.

The scope for regioselective 3 '-functionalisation of the 14β allyl 17 -ketone 54 was also explored in order to gain access, via intramolecular $3^{\prime}, 17$-closure, to $14 \beta, 17 \beta$-propano $17,17^{1}$-diols. This was readily achieved through hydroboration-oxidation of compound 54, followed by Swern oxidation of the resultant $3^{\prime}, 17 \xi$-diol mixture, to give the 14β-formylethyl 17 -ketone 70 (70\%). The dioxo compound 70 underwent intramolecular reductive cyclisation in the presence of McM urry reagent ${ }^{18}$ [prepared by $\mathrm{Zn}-\mathrm{Cu}$ couple reduction of $\mathrm{TiCl}_{3} \cdot(\mathrm{DME})_{1.5}$] in DM E at $20^{\circ} \mathrm{C}$, to give a separable mixture of $14 \beta, 17 \beta$-propano 17,171-diols 71 (53\%) and 72 (4\%). The configurational assignments followed from distinctive N M R data for the diols 71 and 72, and their derived 17^{1}-acetates 73 and 74, and the product distribution is consistent with the expectation of stereoselectivity mediated by favoured co-linear alignment of the 17and 3^{\prime}-oxo groups of 70 in a chair-like transition state. The consequent presentation of the si-face of the 3'-oxo group to $\mathrm{C}-17$ thus leads to preferential formation of the $17^{1} \mathrm{R}$-isomer 71.

A n attempt to prepare sufficient of the minor $17^{11} \mathrm{~S}$-isomer 72 for further study, via M itsunobu inversion of compound 71, was unsuccessful. H owever, Swern oxidation of 71 gave the 171ketone 77, which underwent highly stereoselective LA H reduction to give 72. Deprotection of the diols 71 and $\mathbf{7 2}$ furnished the corresponding bridged analogues 75 and 76 of estriol.
In further experiments conducted for comparison, LAH reduction, or preferably for high-yield recovery, $\mathrm{NaBH}_{4}-\mathrm{CeCl}_{3}$ reduction of the bridged enone $\mathbf{5 2}$ gave only the corresponding $17,17^{1} \mathrm{~S}$-diol 78 , the structure of which was confirmed by catalytic hydrogenation to give compound 72. The stereoselectivity of hydride reduction in this case contrasts with that of the epimeric bridged enone 2 , suggesting that the 13β methyl group in $\mathbf{5 2}$ is a more decisive sterically inhibiting factor to exo-approach of hydride, than are the ring C elements in 2. The $17,17^{11}$-diol 78 was also converted into the corresponding 3,17,171-triol 79 for comparative biological evaluation.

Receptor affinity studies

Competitive binding affinities for the estradiol receptor have been determined for the hormone analogues described here, ${ }^{19}$ using the competition factor ${ }^{20}$ (CF) as determinant. 14,17 α -Propanoestra-1,3,5(10)-triene-3,17 β-diol 17 displays highly competitive binding (CF 1.5), which is amplified in 14,17 $\alpha-$ prop- 17^{2}-enoestra-1,3,5(10)-triene $3,17 \beta$-diol 15 (CF 0.4), but strongly attenuated by introduction of a 171-hydroxy group both in the $14 \alpha, 17 \alpha$-propano and the $14 \alpha, 17 \alpha$-prop- 17^{2}-eno series, as exemplified by 6 (CF 60), $\mathbf{7}$ (CF 44), 10 (CF 98) and $\mathbf{1 2}$ ($C F>500$). In the $14 \beta, 17 \beta$-propano series, the weak competitive binding of the parent estradiol analogue, 14,17ß-propano14β-estra-1,3,5(10)-triene-3,17 α-diol 64 (CF 69), is even more pronounced in all of the derived variants bearing β-bridgefunctionality or unsaturation: 60 (CF ∞), 61 (CF ∞), 68 (CF 318), 69 (CF 470), 75 (CF 360), 76 (CF >500) and 79 (CF 180). It is therefore evident that the binding affinity associated with the presence of a $14 \alpha, 17 \alpha$-ethano bridge in estradiol ${ }^{2}$ is retained in the presence of a $14 \alpha, 17 \alpha$-propano bridge, which suggests that the corresponding binding domain in the estradiol receptor is indifferent to the steric demand of these structural features on the α-face of ring D. By contrast, the poor binding affinity of
the epimeric $14 \beta, 17 \beta$-propano analogue reveals a receptor domain associated with the β-surface near ring D which is exceptionally sensitive to skeletal change. This influence may be largely steric, since superimpositional modelling studies display very small differences in the spatial disposition of polar binding regions in these analogues. A further conclusion is that polar functionality on the bridges, exemplified by the analogues in this study, is inimical to receptor binding, even in the example (viz. 75) manifesting structural resemblance to estriol and its 14 $\alpha, 17 \alpha$-ethano analogue.

An interpretation of these findings will be presented in the context of more detailed structural and molecular modelling studies, to be published elsewhere, but the trends described here suffice to reveal a pattern of structure-activity relationships which has been instrumental in identifying additional synthetic targets based upon ring D bridged analogues of estradiol.

Experimental

M ps were determined on a Reichert-J ung Thermovar apparatus and are uncorrected. U nless otherwise stated, spectra were recorded as follows: IR, Perkin-EImer 983, chloroform solutions, ${ }^{1} \mathrm{H}$ NMR, Varian VXR (200 MHz) and Varian Unity (400 M Hz), deuteriochloroform solutions (J values are given in Hz); ${ }^{13} \mathrm{C}$ NM R , Varian VXR (50 MHz) or Varian U nity (100 MHz), deuteriochloroform solutions; mass spectra (electronimpact), VG M icromass 16F. Optical rotations were measured on a Perkin-Elmer 141 polarimeter for chloroform solutions at $20^{\circ} \mathrm{C}$, and $[a]_{\mathrm{D}}$-values are given in 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. M icroanalyses were performed on a C arlo Erba EA 1108 instrument. Silica gel for chromatography refers to M erck K ieselgel 60, 63$200 \mu \mathrm{~m}$ (gravity) or $40-63 \mu \mathrm{~m}$ (flash).

3-M ethoxy-17 ${ }^{1}$-oxo-14,17 α-prop-17 ${ }^{2}$-enoestra-1,3,5(10)-trien17β-yl acetate 2

17 β-A cetoxy-3-methoxy-20-oxo-19-nor-17 α-pregna-1,3,5(10)-triene-14-carbaldehyde $\mathbf{1}(250 \mathrm{mg}, 0.63 \mathrm{mmol})$ was treated with hydrochloric acid ($12 \mathrm{~mol} \mathrm{dm}^{-3} ; 1 \mathrm{~cm}^{3}$) in tetrahydrofuran (THF ; $10 \mathrm{~cm}^{3}$) at $50^{\circ} \mathrm{C}$ for 3 h . The cooled reaction mixture was neutralised with saturated aq. NaHCO_{3}, and the product was isolated by extraction with toluene Filtration of the residue (260 mg) through silica gel (20 g) with EtOA c-toluene (1:19) gave the product $2(234 \mathrm{mg}, 98 \%)$, mp 200-204 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+174$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 75.5 ; \mathrm{H}$, 7.1\%; $\mathrm{M}^{+}, 380 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.8$; $\mathrm{H}, 7.4 \% ; \mathrm{M}, 380$); $v_{\text {max }} / \mathrm{cm}^{-1} 1739$ and $1693 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.13(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.8,13 \beta-$ $\mathrm{M} \mathrm{e}), 1.45(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 13.1$ and $4.5,12 \alpha-\mathrm{H}$), $1.68(1 \mathrm{H}, \mathrm{ddd}$, J 12.5, 9.0 and 2.8), 1.92 (1 H , ddd, J 12.5, 9.8 and 5.8), 2.15 (3 $\mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OA} \mathrm{c}$, 2.22-2.29 ($1 \mathrm{H}, \mathrm{m}, 12 \beta-\mathrm{H}$), 2.34 (1 H , ddd, J 14.9, 9.8 and $2.8,16 \beta-\mathrm{H}$), 2.47 (1 H , td, J 2×11.7 and 4.3 , $9 \alpha-\mathrm{H}), 2.53(1 \mathrm{H}$, br ddd, J 14.9, 9.0 and 5.1, 16 $\alpha-\mathrm{H}$), 2.86-2.93 $\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}\right.$ e), $6.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0,17^{2}-\right.$ H), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H})$, $7.0\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.0,17^{3}-\mathrm{H}\right)$ and $7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}) ; \delta_{\mathrm{c}}(100$ $\mathrm{M} \mathrm{Hz}) 196.1\left(\mathrm{~s}, \mathrm{C}-17^{1}\right.$), 169.9 (s, OCOM e), 157.7 (s, C-3), 153.5 (d, C-173), 137.6 (s, C-5), 131.7 (s, C-10), 127.0 (d, C-17²), 127.3 (d, C-1), 113.8 (d, C-4), 112.0 (d, C-2), 93.8 (s, C-17), 55.2 (q, 3-0M e), 54.3 (s, C-14*), 53.5 (s, C-13*), 41.1 (d, C-8), 39.3 (d, C-9), 31.0 (t, C-16), 30.4 (t, C-6), 29.5 (t, C-15), 27.9 (t, C-11), 26.9 ($\mathrm{t}, \mathrm{C}-12$), 23.5 ($\mathrm{t}, \mathrm{C}-7$), 21.2 ($\mathrm{q}, \mathrm{OCOM} \mathrm{e)} \mathrm{and} 15.9$ (q , $\mathrm{C}-18)$. A ssignments marked * may be the other way round.

17 β-H ydroxy-3-methoxy-14,17 α-prop- 17^{2}-enoestra-1,3,5(10)-

 trien- 17^{1}-one 3(a) Compound 1 ($430 \mathrm{mg}, 1.08 \mathrm{mmol}$) was dissolved in methanolic potassium hydroxide ($1 \mathrm{~mol} \mathrm{dm}^{-3} ; 20 \mathrm{~cm}^{3}$). A fter 3 h at $25^{\circ} \mathrm{C}$, the mixture was diluted with water and the product was isolated by extraction with toluene. Crystallisation of the residue (402 mg) from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$ gave the product 3 (114 mg), mp 177-180 ${ }^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+195$ (c $0.8 \mathrm{in} \mathrm{CHCl}_{3}$) (Found: C ,
78.1; $\mathrm{H}, 7.8 \% ; \mathrm{M}^{+}, 338 . \mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.1 ; \mathrm{H}, 7.7 ; \mathrm{M}$ $338) ; v_{\text {max }} / \mathrm{cm}^{-1} 3460$ and 1670 ; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.17(3 \mathrm{H}, \mathrm{s}$, $13 \beta-\mathrm{M} \mathrm{e}), 2.46(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 10.3$ and $3.9,9 \alpha-\mathrm{H}), 2.86-2.96(2$ $\left.\mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}), 6.21\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8,17^{2}-\mathrm{H}\right)$, $6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H}), 7.17$ $\left(2 \mathrm{H}\right.$, superimposed d, J $9.8,17^{3}-\mathrm{H}$ and d, J 8.6, 1-H). Chromatography of the mother-liquor residue (280 mg) on silica gel $(30 \mathrm{~g})$ with EtOA c-toluene ($1: 9$) as eluent gave further product 3 (197 mg) followed by mixed fractions (17 mg).
(b) Similar alkaline treatment of the 17β-acetate 2 (50 $\mathrm{mg}, 0.13 \mathrm{mmol}$) for 5 h , followed by crystallisation of the product (42 mg) from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ gave the 17β-alcohol 3 (25 mg). The mother-liquor residue comprised an inseparable mixture (TLC) of $\mathbf{3}$ and an isomeric product ($\sim 25 \%$ by NMR).

H ydride reduction of the enone 2

Lithium aluminium hydride (LAH) ($319 \mathrm{mg}, 8.4 \mathrm{mmol}$) was added to a stirred solution of the enone $2(958 \mathrm{mg}, 2.8 \mathrm{mmol})$ in dry THF ($100 \mathrm{~cm}^{3}$) at $25^{\circ} \mathrm{C}$. A fter 2 h at $25^{\circ} \mathrm{C}$, the mixture was treated with ethyl acetate, added slowly to destroy excess reagent, and then acidified with aq. acetic acid. The resultant mixture was extracted with EtOA c-toluene (3:7), and the extract, on work-up, gave a residue (1.05 g) which was adsorbed on silica gel (35 g). Elution with $\mathrm{MeOH}-\mathrm{CHCl}_{3}(3: 97)$ gave ($17^{1} \mathrm{R}$)-3-methoxy-14,17 α-prop-1722-enoestra-1,3,5(10)-triene$17 \beta, 17^{1}$-diol 4 ($483 \mathrm{mg}, 56 \%$), mp $139-143^{\circ} \mathrm{C}$ (from CHCl_{3} M eOH); $[a]_{\mathrm{D}}+63$ (c 0.9 in THF) (Found: C, 77.2; H, 8.2\%; $\mathrm{M}^{+}, 340 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.6 ; \mathrm{H}, 8.3 \% ; \mathrm{M}, 340$); $\delta_{\mathrm{H}}[200$ $\left.\mathrm{MHz}, \mathrm{MeOD}-\mathrm{CDCl}_{3}(7: 93)\right] 0.97$ ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}$), 2.39 (1 H, m, $9 \alpha-\mathrm{H}), 2.70-2.82\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.68(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e})$, $3.8\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.1,17^{1}-\mathrm{H}\right), 5.68\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.8\right.$ and $4.1,17^{2}-$ H), 5.87 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8,17^{3}-\mathrm{H}$), 6.52 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}$), 6.61 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}$) and $7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6$, $1-\mathrm{H}$), followed by ($17^{1} \mathrm{~S}$)-3-methoxy-14,17a-prop-172 -enoestra-1,3,5(10)-triene-17ß,171-diol 5 ($320 \mathrm{mg}, 37 \%$), mp $170-173^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+180$ (c 0.9 in THF) (Found: C, 77.4; $\left.\mathrm{H}, 8.2 ; \mathrm{M}^{+}, 340\right) ; \delta_{\mathrm{H}}\left[200 \mathrm{M} \mathrm{Hz}, \mathrm{M} \mathrm{eOD}-\mathrm{CDCl}_{3}(7: 93)\right]$ $1.0(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 2.66-2.82\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, 3-OM e), 4.3 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{W}_{1 / 2} 3,17^{1}-\mathrm{H}$), 5.43 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.8$ and $\left.2.0,17^{2}-\mathrm{H}\right), 5.55\left(1 \mathrm{H}\right.$, dd, J 9.8 and $\left.1.6,17^{3}-\mathrm{H}\right), 6.52(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and 7.1 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$).

3-D emethylation of 4 ($120 \mathrm{mg}, 0.35 \mathrm{mmol}$) [diisobutylaluminium hydride (DIBAH; 10 equiv.) in dry toluene ($5 \mathrm{~cm}^{3}$); reflux, 72 h] gave ($17^{1} \mathrm{R}$)-14,17 α-prop- 17^{2}-enoestra- $1,3,5(10$)-triene-3,17ק,171-triol 6 ($70 \mathrm{mg}, 61 \%$), mp $215-218^{\circ} \mathrm{C}$ (from M eOH); $[a]_{\mathrm{D}}+67$ (c 0.5 in THF) (Found: C, 76.9; H, 7.8\%; M ${ }^{+}$, 326. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.3 ; \mathrm{H}, 8.0 \%$; $\mathrm{M}, 326$).

Similar treatment of 5 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$) gave ($17^{1} \mathrm{~S}$)14,17 α-prop-1722-enoestra-1,3,5(10)-triene-3,17ß,171-triol 7 (64 $\mathrm{mg}, 67 \%$), mp 177-181 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[a]_{\mathrm{D}}+170$ (c 0.9 in THF) (Found: C, 76.8; H, 7.8\%; M ${ }^{+}$, 326).

3-M ethox y-17 ${ }^{1}$-oxo-14,17 α-propanoestra-1,3,5(10)-trien-17 β-yl acetate 8

A solution of the enone $2(230 \mathrm{mg}, 0.61 \mathrm{mmol})$ in ethanol (40 cm^{3}) at $25^{\circ} \mathrm{C}$ was hydrogenated for 8 h at 200 kPa in the presence of palladium-carbon ($10 \% ; 60 \mathrm{mg}$). The mixture was filtered, and the filtrate was evaporated under reduced pressure. Chromatography of the residue (225 mg) on silica gel (20 g) with EtOA c-toluene (1:9) as eluent gave the 17^{1}-ketone 8 (192 $\mathrm{mg}, 83 \%$), mp 205-208 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[a]_{\mathrm{D}}+44$ (c 1.0 in CHCl_{3}) (Found: C, $75.4 ; \mathrm{H}, 7.9 \% ; \mathrm{M}^{+}$, 382. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, 75.4; H, 7.9\%; M, 382); $v_{\text {max }} / \mathrm{cm}^{-1} 1743$ and 1722; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.1(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 1.69(1 \mathrm{H}$, dd, J 13.5 and 9.6), 2.05 (1 H, obsc. td), 2.11 ($3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OA}$ c), 2.37 (1 H , dd, J 14.8 and 7.3), $2.74(2 \mathrm{H}, \mathrm{m}), 2.81(1 \mathrm{H}$, ddd, J 14.6, 9.4 and 5.2$)$, 2.86-2.93 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.7, 4-H) , $6.7(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H})$ and $7.14(1 \mathrm{H}, \mathrm{d}$,

J 8.6, 1-H); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 206.4$ (s, C-17¹), 170.1 (s, OCOM e), 157.5 (s, C-3), 137.4 (s, C-5), 133.2 (s, C-10), 126.6 (d, C-1), 113.8 (d, C-4), 111.7 (d, C-2), 92.6 (s, C-17), 55.1 ($\mathrm{q}, 3-\mathrm{OM} \mathrm{e}$), 55.1 (s, C-14), 46.2 (s, C-13), 42.4 (d, C-8), 36.9 (d, C-9), 34.7, 33.6, 32.1, 27.9 and 26.1 (each $\mathrm{t}, \mathrm{C}-11, \mathrm{C}-15, \mathrm{C}-16, \mathrm{C}-17^{2}$ and $\mathrm{C}-17^{3}$), 30.7 ($\mathrm{t}, \mathrm{C}-6$), 27.2 ($\mathrm{t}, \mathrm{C}-12$), 24.1 ($\mathrm{t}, \mathrm{C}-7$), 21.0 (q , OCOM e) and 15.9 (q, C-18).

(171R)-3-M ethoxy-14,17 α-propanoestra-1,3,5(10)-triene$17 \beta, 17^{1}$-diol 9

The 17^{1}-ketone 8 ($110 \mathrm{mg}, 0.29 \mathrm{mmol}$) was reduced with LAH, as described for compound 2. Crystallisation of the product (105 mg) from $\mathrm{M}_{2} \mathrm{CO}$ furnished the ($17^{1} \mathrm{R}$)-17ß, 17^{1}-diol 9 (76 $\mathrm{mg}, 77 \%$), mp $180-183^{\circ} \mathrm{C}$; $[a]_{\mathrm{D}}+61$ (c 0.9 in THF) (Found: C, $77.0 ; \mathrm{H}, 8.6 \% ; \mathrm{M}^{+}, 342 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.2 ; \mathrm{H}, 8.8 \% ; \mathrm{M}$, 342); $v_{\text {max }} / \mathrm{cm}^{-1} 3553$ and $3391 ; \delta_{\mathrm{H}}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 1.26(3 \mathrm{H}$, $\mathrm{s}, 13 \beta-\mathrm{Me}), 2.75-2.88\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.15(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 13.3$ and $4.7,9 \alpha-\mathrm{H}), 3.71(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $4.2(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 2 \times 3.0$, $\left.17^{1}-\mathrm{H}\right), 6.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.7 , $2-\mathrm{H})$ and $7.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.
The derived ($17^{1} \mathrm{R}$)-3,173,171-triol 10 had mp 262$265^{\circ} \mathrm{C}$ (from CHCl $3_{3}-\mathrm{M} \mathrm{EOH}$); [$\left.a\right]_{\mathrm{D}}+81$ (c 1.0 in THF) (Found: $\mathrm{C}, 76.5 ; \mathrm{H}, 8.5 \% ; \mathrm{M}^{+}, 328 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C, 76.8; $\mathrm{H}, 8.6 \%$; M, 328).

(1715)-3-M ethoxy-14,17 α-propanoestra-1,3,5(10)-triene-178,171-diol 11

A solution of the olefinic diol 5 ($50 \mathrm{mg}, 0.15 \mathrm{mmol})$ in ethanol $\left(5 \mathrm{~cm}^{3}\right)$ at $25^{\circ} \mathrm{C}$ was hydrogenated for 6 h at 100 kPa in the presence of palladium-carbon ($10 \% ; 10 \mathrm{mg}$). The mixture was filtered, and the residue (53 mg) obtained from concentration of the filtrate was chromatographed on silica gel (6 g) with $\mathrm{MeOH}-\mathrm{CHCl}_{3}(3: 97)$ as eluent to give the ($17^{1} \mathrm{~S}$)-17 $3,17^{1}$-diol 11 (37 mg, 74\%), mp $185-187^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}$ +76 (c 0.8 in THF) (Found: C, 76.8; H, 8.5\%; M ${ }^{+}, 342$. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, 77.2; $\mathrm{H}, 8.8 \% ; \mathrm{M}, 342$); $\delta_{\mathrm{H}}[200 \mathrm{M} \mathrm{Hz}$, $\left.\mathrm{M} \mathrm{eOD}-\mathrm{CDCl}_{3}(7: 93)\right] 0.98(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 2.25(1 \mathrm{H}, \mathrm{m}, 11 \alpha-$ $\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 12.0$ and $5.4,9 \alpha-\mathrm{H}), 2.71-2.83(2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{2}\right), 3.7(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $3.86(1 \mathrm{H}$, dd, J 9.9 and 6.1 , $\left.17^{1}-\mathrm{H}\right), 6.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and $2.7,2-$ $\mathrm{H})$ and $7.1(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,1-\mathrm{H})$.
The derived ($17^{1} \mathrm{~S}$)-3,173,171-triol 12 had mp 286-290 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Me}_{2} \mathrm{CO}$); $[a]_{\mathrm{D}}+70$ (c 1.0 in THF) (Found: C, 76.3; $\mathrm{H}, 8.3 \% ; \mathrm{M}^{+}$, 328. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C , 76.8; $\mathrm{H}, 8.6 ; \mathrm{M}$, 328).

3-M ethoxy-14,17 α-prop- 17^{2}-enoestra-1,3,5(10)-trien-17 β-ol 14

Boron trifluoride-diethyl ether ($0.12 \mathrm{~cm}^{3}$) was added in three equal aliquots during 30 h to a solution of compound 3 (466 $\mathrm{mg}, 1.4 \mathrm{mmol}$) in ethanedithiol ($1 \mathrm{~cm}^{3}$) and glacial acetic acid (3 cm^{3}) at $30^{\circ} \mathrm{C}$. The reaction mixture was then poured into saturated aq. NaHCO_{3}, and the product (618 mg) was isolated by extraction with toluene and adsorbed on silica gel (50 g). Elution with EtOA c-toluene (1:9) gave the crude dithioketal 13 ($560 \mathrm{mg}, 98 \%$), $v_{\text {max }} / \mathrm{cm}^{-1} 3481$; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.09(3 \mathrm{H}, \mathrm{s}$, $13 \beta-\mathrm{M} \mathrm{e}), 3.10-3.45\left(4 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e})$, 5.69 and 5.8 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.6,17^{2}$ - and $17^{3}-\mathrm{H}$), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.7, 4-H), $6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H})$ and $7.19(1 \mathrm{H}, \mathrm{d}$, J $8.6,1-\mathrm{H})$; m/z $414\left(\mathrm{M}^{+}\right)$, which was used directly in the next step.

Compound 13 ($700 \mathrm{mg}, 1.7 \mathrm{mmol}$) in dry THF ($20 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of sodium (390 mg) in liquid ammonia ($120 \mathrm{~cm}^{3}$). A fter 2 h , solid $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the mixture to disperse the blue colour, and the ammonia was allowed to evaporate. Extraction of the residue with toluene gave material (560 mg) which was chromatographed on silica gel (30 g) with EtOA c-toluene (1:19) as eluent, to give the product 14 ($459 \mathrm{mg}, 84 \%$), mp $141-142^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+137$ (c 1.0 in CHCl_{3}) (Found: C , 81.3; $\mathrm{H}, 8.5 \% ; \mathrm{M}^{+}, 324 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.4 ; \mathrm{H}, 8.7 \%$;
$\mathrm{M}, 324) ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.06(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), 2.8-2.9 (2 H $\mathrm{m}, 6-\mathrm{H}_{2}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), 5.57 (1 H , ddd, J 9.7, 4.4 and 2.2, $\left.17^{2}-\mathrm{H}\right), 5.75\left(1 \mathrm{H}\right.$, br d, J $\left.9.7,17^{3}-\mathrm{H}\right), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7$, $4-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6, 1-H).

The derived $3,17 \beta$-diol $\mathbf{1 5}$ had $\mathrm{mp} 156-159{ }^{\circ} \mathrm{C}$ (from EtOA c); $[a]_{\mathrm{D}}+150$ (c 0.9 in THF) (Found: C, 81.0; H, 8.1\%; M ${ }^{+}, 310$ $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.25 ; \mathrm{H}, 8.4 \% ; \mathrm{M}, 310$).

3-M ethoxy-14,17 α-propanoestra-1,3,5(10)-trien-17 β-ol 16

A solution of the olefin $\mathbf{1 4}(175 \mathrm{mg}, 0.54 \mathrm{mmol})$ in ethyl acetate ($10 \mathrm{~cm}^{3}$) at $25^{\circ} \mathrm{C}$ was hydrogentated in the presence of palladium-carbon $(10 \%, 50 \mathrm{mg}$) for 30 h at 200 kPa . The mixture was filtered, and the filtrate was evaporated to give the 17β alcohol 16 ($170 \mathrm{mg}, 97 \%$), $\mathrm{mp} 155-157^{\circ} \mathrm{C}$ (from CHCl_{3} MeOH); $[a]_{\mathrm{D}}+86$ (c $0.9 \mathrm{in} \mathrm{CHCl}_{3}$) (Found: C, 80.7; $\mathrm{H}, 9.0 \%$; $\mathrm{M}^{+}, 326 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.9 ; \mathrm{H}, 9.3 \% ; \mathrm{M}, 326$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $3602 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.03(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 2.07(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ 2×12.5 and $4.9,12 \alpha-\mathrm{H}), 2.38(1 \mathrm{H}$, dddd, J 13.1, 5.9, 4.9 and $2.0,11 \alpha-\mathrm{H}), 2.74(1 \mathrm{H}$, td, J 2×11.9 and $5.9,9 \alpha-\mathrm{H}$), 2.8-2.9 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.8, 4-H), $6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}$ J 8.6, 1-H).

The derived $3,17 \beta$-diol 17 had mp 228-231 ${ }^{\circ} \mathrm{C}$ (from EtOA c); $[a]_{\mathrm{D}}+87$ (c 0.6 in THF) (Found: C, 80.4; H, 8.8\%; M ${ }^{+}$, 312 $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.7 ; \mathrm{H}, 9.0 \% ; \mathrm{M}, 312$).

($17^{2} \mathrm{R}$)-3-M ethoxy-16 α-methyl-17 ${ }^{2}$-phenylsulfonyl-14,17 α -ethanoestra-1,3,5(10)-triene-15 $\beta, 16 \beta, 17 \beta$-triol 17 -acetate 19

Compound 18 ($1.18 \mathrm{~g}, 2.33 \mathrm{mmol}$) was treated with osmium tetraoxide ($600 \mathrm{mg}, 2.36 \mathrm{mmol}$) in pyridine ($45 \mathrm{~cm}^{3}$) at $25^{\circ} \mathrm{C}$ for 168 h . A q. sodium dithionite ($10 \%, 90 \mathrm{~cm}^{3}$) was added to the mixture which was then stirred at $25^{\circ} \mathrm{C}$ for 45 min ; after this it was diluted with water and extracted with CHCl_{3}. The extract was washed successively with dilute hydrochloric acid, saturated aq. NaHCO_{3} and brine, dried (MSO_{4}) and concentrated under reduced pressure. Chromatography of the residue (1.42 g) on silica gel (50 g) with EtOA C-toluene ($1: 4$) as eluent gave starting material 18 (157 mg) followed by the $15 \beta, 16 \beta$-diol 19 ($923 \mathrm{mg}, 73 \%$), double mp $174-176$ and $232-234^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane), $[a]_{\mathrm{D}}+115$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 66.4 ; \mathrm{H}$, 6.7%; $\mathrm{M}^{+}, 540 . \mathrm{C}_{30} \mathrm{H}_{36} \mathrm{O}_{7} \mathrm{~S}$ requires C, 66.6; H, 6.7\%; M,540); $v_{\text {max }} / \mathrm{cm}^{-1} 3481$ and $1708 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.32(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e})$, $1.78(3 \mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{Me}$), $2.06(3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}), 2.14(2 \mathrm{H}, \mathrm{m}$, 7β - and $8 \beta-\mathrm{H}$), 2.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.1$ and $12.2,17^{1}-\mathrm{H}_{\text {exo }}$), 2.42 (1 $\mathrm{H}, \mathrm{m}, 7 \alpha-\mathrm{H}$), 2.58 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.1$ and $5.5,17^{1}-\mathrm{H}_{\text {endo }}$), 2.84 (1 H, s, exch. by $\left.\mathrm{D}_{2} \mathrm{O}, 16 \beta-\mathrm{OH}\right), 2.8-3.1\left(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right.$ and $9 \alpha-$ H), 3.06 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.8$, exch. by $\mathrm{D}_{2} \mathrm{O}, 15 \beta-\mathrm{OH}$), $3.79(3 \mathrm{H}, \mathrm{s}$, $3-\mathrm{OM} \mathrm{e}$), $3.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2\right.$ and $\left.5.5,17^{2}-\mathrm{H}\right), 4.95(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $5.8 \rightarrow \mathrm{~s}$ on $\mathrm{D}_{2} \mathrm{O}$ exch., $15 \alpha-\mathrm{H}$), $6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.72$ (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4$ and $2.7,2-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,1-\mathrm{H})$ and $7.5-$ 7.9 ($5 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{Ph}$); $\delta_{\mathrm{c}}(100 \mathrm{MHz}) 170.4$ (s, 17ß-OCOM e), 157.5 (s, C-3), 140.9 (s, C-1'), 138.9 (s, C-5), 133.6 (d, C-4'), 132.5 (s, C-10), 129.5 ($2 \mathrm{C}, \mathrm{d}, \mathrm{C}-3^{\prime}$ and C-5 $)^{\prime}$), 127.8 ($2 \mathrm{C}, \mathrm{d}$, C-2' and C-6'), 127.1 (d, C-1), 113.6 (d, C-4), 111.9 (d, C-2), 89.2 (s, C-17), 79.5 (s, C-16), 74.7 (d, C-15), 61.6 (d, C-17²), 58.1 (s, C-14), 55.3 ($\mathrm{q}, 3-\mathrm{OM} \mathrm{e}$), 54.4 ($\mathrm{s}, \mathrm{C}-13$), 36.3 (d, C-9), 35.6 (d, C-8), 31.2 (t, C-6), 30.5 (t, C-12), 28.9 (t, C-17¹), 26.7 (t, C-11), 25.3 ($\mathrm{q}, 16-\mathrm{Me}$), 24.9 ($\mathrm{t}, \mathrm{C}-7$), 21.6 ($\mathrm{q}, 17 \beta-$ OCOM e) and 18.0 ($q, \mathrm{C}-18$).

17-A cetoxy-3-methoxy-20-oxo-15 β-phenylsulfonyl-19-nor-14 β -pregna-1,3,5(10)-triene-14-carbaldehyde 20
 A q. sodium periodate ($6 \% ; 29 \mathrm{~cm}^{3}$) was added to a solution of

 the diol 19 ($923 \mathrm{mg}, 1.7 \mathrm{mmol}$) in ethanol ($50 \mathrm{~cm}^{3}$). A fter 3.5 h at $20^{\circ} \mathrm{C}$, the mixture was diluted with water and the product (927 mg) was isolated by extraction with CHCl_{3} and adsorbed on silica gel (36 g). Elution with EtOA c-toluene ($1: 4$) gave the 14-carbaldehyde 20 ($778 \mathrm{mg}, 85 \%$) as an oil, $v_{\text {max }} / \mathrm{cm}^{-1} 1737$ and $1714 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.01(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 1.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.9$and 9.8, $16 \alpha-\mathrm{H}), 2.03(3 \mathrm{H}, \mathrm{s}, 20-\mathrm{Me}), 2.07(3 \mathrm{H}, \mathrm{s}, 17 \alpha-\mathrm{OAC})$, 2.65-2.9 ($3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$ and $9 \alpha-\mathrm{H}$), $3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.9$ and $11.3,16 \beta-\mathrm{H}), 3.7(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $4.28(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.3$ and 9.8 , $15 \alpha-\mathrm{H}), 6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.4$ and 2.7 , $2-\mathrm{H}), 7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4,1-\mathrm{H}), 7.5-8.0\left(5 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{Ph}\right)$ and 10.29 ($1 \mathrm{H}, \mathrm{s}, 14 \beta-\mathrm{CH} 0$); m/z 538 (M^{+}).

Reductive desulfonylation of compound 19

A solution of the phenylsulfonyl compound $19(360 \mathrm{mg}$, 0.6 mmol) in THF ($12 \mathrm{~cm}^{3}$) was added to samarium(II) iodide [generated by reaction of samarium (1.14 g) with diiodoethane $(1.93 \mathrm{~g}, 6.8 \mathrm{mmol})$] in THF $\left(68 \mathrm{~cm}^{3}\right)$ at $-20^{\circ} \mathrm{C}$ with stirring, followed by hexamethylphosphoric triamide (H M PA) $\left(5.5 \mathrm{~cm}^{3}\right)$. A fter 4 h at $-20^{\circ} \mathrm{C}$, the mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with EtOAC, and the extract was washed successively with aq. sodium dithionite and brine, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue (303 mg) was chromatographed on silica gel (25 g) with EtOA c-hexane ($3: 2$) as eluent to give ($17^{2} \mathrm{~S}$)-3-methoxy16α-methyl-15, 17^{2}-cyclo-14,17 α-ethanoestra-1,3,5(10)-triene$16 \beta, 17 \beta$-diol 17-acetate 21 ($78 \mathrm{mg}, 31 \%$), double mp 112-114 and $146-147{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{D}+41$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{M}^{+}, 382.214 . \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{M}, 382.214$); $v_{\text {max }} / \mathrm{cm}^{-1} 3594$ and $1738 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.09(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.2$ and $\left.1.1,17^{2}-\mathrm{H}\right), 1.29(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}$), 1.33 ($3 \mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{Me}$), 1.55 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 5.2,15-\mathrm{H}), 1.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.4,17^{1}-\mathrm{H}_{\text {endo }}\right), 2.09(3 \mathrm{H}, \mathrm{s}$, $17 \beta-\mathrm{OAc}), 2.34(1 \mathrm{H}, \mathrm{obsc} . \mathrm{m}, 9 \alpha-\mathrm{H}), 2.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.4$ and $1.1,17^{1}-\mathrm{H}_{\text {exo }}$), $2.8\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.76(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}), 6.67$ (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and 7.21 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 171.5$ (s, 17ß-OCOM e), 158.1 (s , C-3), 138.5 (s, C-5), 133.0 (s, C-10), 127.4 (d, C-1), 114.4 (d, C-4), 112.4 ($d, C-2$), 90.5 (s, C-17), 83.1 ($s, C-16$), 55.9 (q, 3-OM e), 47.8 (s, C-13), 43.6 (d, C-9), 36.4 ($s, C-14$), 35.6 (d, C-8), 33.3 (t, C-12), 31.7 (d, C-171), 30.5 (t, C-6), 27.5 (t, $\mathrm{C}-11$), 25.7 (t, C-15), 24.1 (t, C-7), 23.9 ($\mathrm{q}, 16 \alpha-\mathrm{Me}$), 22.3 (q , $17 \beta-O C O M$ e), 17.9 ($q, \mathrm{C}-18$) and 12.2 ($\mathrm{d}, \mathrm{C}-17^{2}$); followed by 3 -methoxy-16 α-methyl-14,17 α-ethanoestra-1,3,5(10)-triene$15 \beta, 16 \beta, 17 \beta$-triol 17 -acetate 22 ($78 \mathrm{mg}, 29 \%$), mp $182-185^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}-\mathrm{MeOH}$); $[a]_{\mathrm{D}}+4$ (c 1.0 in CHCl_{3}) (Found: C , 72.0; $\mathrm{H}, 8.0 \% ; \mathrm{M}^{+}, 400 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 72.0 ; \mathrm{H}, 8.05 \%$; $\mathrm{M}, 400$); $v_{\text {max }} / \mathrm{cm}^{-1} 3600,3575$ and 1738; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.24$ (3 $\mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}$), 1.49 ($3 \mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{M} \mathrm{e}$), 2.11 ($3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}$), $2.64(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.5$ and $3.4,9 \alpha-\mathrm{H}), 2.78-3.0\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $3.61\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.7 \rightarrow \mathrm{~S}\right.$ on $\mathrm{D}_{2} \mathrm{O}$ exch., $15 \alpha-\mathrm{H}$), $3.76(3 \mathrm{H}, \mathrm{S}$, 3-OM e), $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.8 , $2-\mathrm{H}$) and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}) ; \delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 170.2(\mathrm{~s}, 17 \beta-$ OCOM e), 157.4 (s, C-3), 137.9 (s, C-5), 133.1 (s, C-10), 126.3 (d, C-1), 113.7 (d, C-4), 111.5 (d, C-2), 91.6 (s, C-17), 82.3 (d, C-16), 78.7 ($s, C-15$), 55.2 ($q, 3-0 \mathrm{M} \mathrm{e}$), 49.9 and 48.9 (each s , $\mathrm{C}-13$ and $\mathrm{C}-14$), 36.6 ($d, \mathrm{C}-9$), 34.6 ($d, C-8$), 32.1 ($t, C-6$), 29.9 ($\mathrm{t}, \mathrm{C}-17^{1}$), 27.1 ($\mathrm{q}, 16 \alpha-\mathrm{M} \mathrm{e}$), 25.8 ($\mathrm{t}, \mathrm{C}-11$), 23.7 (t, C 12), 23.4 ($t, C-17^{2}$), 23.2 ($t, C-7$), 21.8 ($q, 17 \beta-0 \mathrm{COM}$ e) and 16.3 ($q, C-18$). F urther elution gave starting material 19 (102 $\mathrm{mg}, 28 \%)$.

A cetonide formation- reductive desulfonylation of compound 19 The diol 19 ($740 \mathrm{mg}, 1.37 \mathrm{mmol}$) was treated with aq. perchloric acid (70%; $0.05 \mathrm{~cm}^{3}$) in acetone ($20 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ for 5 h . NaHCO_{3} was added to the mixture which was then concentrated under reduced pressure, treated with water and extracted with EtOA c. Work-up of the extract gave a brown oily residue $(750 \mathrm{mg})$ which was adsorbed on silica gel (38 g). Elution with EtOA c-hexane ($7: 13$) gave ($17^{2} \mathrm{R}$)-15 β, 16β-isopropylidene-dioxy-3-methoxy-16 α-methyl-172 ${ }^{2}$-phenylsulfonyl-14,17 α-ethano-estra-1,3,5(10)-trien-17ß-yl acetate 23 ($625 \mathrm{mg}, 79 \%$), mp 185$188^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+102$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 67.9 ; \mathrm{H}, 6.9 \%$; $\mathrm{M}^{+}, 580 . \mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{~S}$ requires $\mathrm{C}, 68.25$; $\mathrm{H}, 6.9 \% ; \mathrm{M}, 580$); $v_{\text {max }} / \mathrm{cm}^{-1} 1735 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.43,1.48$ and 1.55 (each $3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$ and $\mathrm{CM} \mathrm{e}_{2}$), 1.93 ($3 \mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{Me}$), 2.07 ($3 \mathrm{H}, \mathrm{s}, 17 \mathrm{~B}-\mathrm{OAc}$), 3.79 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), 4.05 (1 H , dd, J
12.4 and $\left.5.5,17^{2}-\mathrm{H}\right), 5.17(1 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8$, $4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$ and $7.5-7.9\left(5 \mathrm{H}, \mathrm{m}, \mathrm{SO}_{2} \mathrm{Ph}\right)$.

The acetonide 23 ($200 \mathrm{mg}, 0.34 \mathrm{mmol}$) was treated with samarium(II) iodide and HM PA in THF ($18 \mathrm{~cm}^{3}$) at $-20^{\circ} \mathrm{C}$ for 1.5 h , as described for compound 19. Chromatography of the product (240 mg) on silica gel (15 g) with EtOA c-hexane $(1: 9 \rightarrow 3.7)$ as eluent gave $15 \beta, 16 \beta$-isopropylidenedioxy- 3 methoxy-16 α-methyl-14,17 α-ethanoestra-1,3,5(10)-trien-17 β-yl acetate 24 ($105 \mathrm{mg}, 70 \%$), mp $213-217^{\circ} \mathrm{C}$ (from CHCl_{3} M eOH); $[a]_{\mathrm{D}}-24$ (c 1.0 in CHCl_{3}) (Found: C, 73.4; $\mathrm{H}, 8.0 \%$; $\mathrm{M}^{+}, 440 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5}$ requires $\left.\mathrm{C}, 73.6 ; \mathrm{H}, 8.2 \% ; \mathrm{M}, 440\right)$; $\delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz}) 0.92(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ 13.4, 9.0 and $6.2,12 \alpha-\mathrm{H}), 1.33(3 \mathrm{H}$, s, $13 \beta-\mathrm{M} \mathrm{e}$), 1.43 and 1.52 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{2}$), $1.64(3 \mathrm{H}, \mathrm{s}$, $16 \alpha-\mathrm{Me}), 2.11(3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}), 2.24(1 \mathrm{H}, \mathrm{dq}$, J 13.2 and $3 \times 3.9,7 \beta-\mathrm{H}), 2.62(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.8$ and $4.1,9 \alpha-\mathrm{H}), 2.8-3.02$ ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), $3.89(1 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{H}), 6.67$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}$), $6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}$) and 7.21 (1 H, d, J 8.6, 1-H).

M ethyl 17 β-acetoxy-3-methoxy-14,17 α-ethenoestra-

 1,3,5(10),15-tetraene-16-carboxylate 263-M ethoxyestra-1,3,5(10),14,16-pentaen-17-yl acetate 25 (162 $\mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl propiolate ($0.09 \mathrm{~cm}^{3}, 1 \mathrm{mmol}$) in dry benzene ($2 \mathrm{~cm}^{3}$) was kept at $100^{\circ} \mathrm{C}$ (sealed tube) for 23 h . The reaction mixture was then adsorbed directly on silica gel (16 g) and eluted with EtOA c-toluene ($1: 49$) to give starting material (8 mg) followed by the cycloadduct 26 ($174 \mathrm{mg}, 85 \%$), mp $141-$ $144{ }^{\circ} \mathrm{C}$ (from CHCl $3_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+1$ (c 1.0 in CHCl_{3}) (Found C, 73.5; H, 7.0\%; M ${ }^{+}$, 408. $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{5}$ requires C, 73.5; H, 6.9\%; $\mathrm{M}, 408) ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.19(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 2.16(3 \mathrm{H}, \mathrm{s}$, $17 \beta-\mathrm{OA}$ c), $2.5(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.4$ and $3.4,9 \alpha-\mathrm{H}), 2.86-2.98(2$ $\mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.69\left(3 \mathrm{H}, \mathrm{s}, 16-\mathrm{CO}_{2} \mathrm{Me}\right.$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), 6.58 ($\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6,17^{2}-\mathrm{H}\right), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 8.6 and $2.4,2-\mathrm{H}$), $7.05\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6,17^{1}-\mathrm{H}\right), 7.2(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $8.6,1-\mathrm{H})$ and $7.44(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H}) ; \delta_{\mathrm{c}}(50 \mathrm{MHz}) 170.8$ (s, $17 \beta-O C O M e), 164.8$ (s, $16-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 157.6 (s, C-3), 152.4 (d, C-15), 147.1 (d, C-16), 140.6 and 139.1 (each $d, C-17^{1}$ and C-172), 137.8 ($\mathrm{s}, \mathrm{C}-5$), 131.9 ($\mathrm{s}, \mathrm{C}-10$), 126.7 ($\mathrm{d}, \mathrm{C}-1$), 113.8 (d , C-4), 111.8 (d, C-2), 98.7 ($\mathrm{s}, \mathrm{C}-17$), 88.3 ($\mathrm{s}, \mathrm{C}-13$), 65.4 ($\mathrm{s}, \mathrm{C}-14$), 55.2 ($q, 3-0 \mathrm{M} \mathrm{e}$), 51.3 ($\mathrm{q}, 16-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 39.8 (d, C-9), 35.9 (d, C-8), 30.2 (t, C-6), 29.9 (t, C-12), 26.3 (t, C-7), 25.2 (t, C-11), 21.4 ($q, 17 \beta-O C O M$ e) and 17.0 ($q, C-18$).

M ethyl 17 β-acetoxy-3-methoxy-14,17 α-ethanoestra-

1,3,5(10),15-tetraene-16-carboxylate 27

A solution of the cycloadduct $26(3.05 \mathrm{~g}, 7.5 \mathrm{mmol})$ in ethyl acetate ($100 \mathrm{~cm}^{3}$) at $25^{\circ} \mathrm{C}$ was hydrogenated for 3 h in the presence of palladium-carbon ($10 \% ; 1.02 \mathrm{~g}$) and then filtered through Celite. The filtrate was evaporated and the residue (2.98 g) was chromatographed on silica gel (300 g) with EtOA chexane ($3: 17$) as eluent, to give the dihydro compound 27 (2.55 $\mathrm{g}, 83 \%$), mp 104-108 ${ }^{\circ} \mathrm{C}$ (from M eOH); $\left.[a]_{\mathrm{D}}+9(\mathrm{c} 1.0 \mathrm{in} \mathrm{CHCl})_{3}\right)$ (Found: C, 73.1; H, 7.5\%; $\mathrm{M}^{+}, 410 . \mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\mathrm{C}, 73.1$; $\mathrm{H}, 7.4 \% ; \mathrm{M}, 410) ; v_{\max } / \mathrm{cm}^{-1} 1737$ and 1713; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.95$ ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), $2.09(3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}), 2.74(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ 2×11.3 and $4,9 \alpha-\mathrm{H}), 2.85-2.98\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.71(3 \mathrm{H}, \mathrm{s}$, $16-\mathrm{CO}_{2} \mathrm{Me}$ e), $3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}$), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.7$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H}), 6.91(1 \mathrm{H}, \mathrm{s}, 15-\mathrm{H})$ and $7.18(1 \mathrm{H}$ d, J 8.6, 1-H); $\delta_{\mathrm{c}}(50 \mathrm{MHz}$) 170.4 (s, 17ß-OCOM e), 164.6 (s, $16-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 157.6 ($\mathrm{s}, \mathrm{C}-3$), 144.4 (d, C-15), 137.9 (s, C-5), 137.5 ($\mathrm{s}, \mathrm{C}-16$), 132.6 (s, C-10), 126.2 (d, C-1), 113.9 (d, C-4), 111.6 (d, C-2), 93.8 ($\mathrm{s}, \mathrm{C}-17$), 59.6 ($\mathrm{s}, \mathrm{C}-14$), 55.2 ($\mathrm{q}, 3-\mathrm{OM} \mathrm{e}$), 54.1 (s , $\mathrm{C}-13$), 51.3 ($\mathrm{q}, 16-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 37.1 ($\mathrm{d}, \mathrm{C}-9$), 36.0 ($\mathrm{d}, \mathrm{C}-8$), 29.9 (t C-6), 29.7 (t, C-12), 28.1 ($\mathrm{t}, \mathrm{C}-17^{1}$), 25.9 (t, C-7), $25.4(\mathrm{t}, \mathrm{C}-11$), 24.7 (t, C-17 ${ }^{2}$), 21.7 ($q, 17 \beta-O C O M$ e) and 15.4 ($q, C-18$).

H ydroxylation of the unsaturated ester 27

Compound 27 ($403 \mathrm{mg}, 0.98 \mathrm{mmol}$) was treated with osmium tetraoxide ($250 \mathrm{mg}, 0.9 \mathrm{mmol}$) in pyridine ($5 \mathrm{~cm}^{3}$) at $25^{\circ} \mathrm{C}$ for

48 h . Aq. sodium dithionite $\left(10 \%, 40 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then stirred at $25^{\circ} \mathrm{C}$ for 45 min . The product was isolated by extraction with CHCl_{3} and chromatographed on silica gel (26 g) with EtOA c-toluene ($1: 9$) as eluent to give starting material 27 (23 mg) followed by methyl 17β-acetoxy15a,16 α-dihydroxy-3-methoxy-14,17 α-ethanoestra-1,3,5(10)-triene-16 β-carboxylate 28 ($281 \mathrm{mg}, 65 \%$), mp 169-170 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Me} \mathrm{C}_{2} \mathrm{CO}$); $[a]_{\mathrm{D}}+49$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 67.9$; $\mathrm{H}, 7.2 \%$; M^{+}, 444. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{7}$ requires $\mathrm{C}, 67.5 ; \mathrm{H}, 7.25 \% ; \mathrm{M}, 444$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3509 \mathrm{br}, 1733$ and $1714 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.82(3 \mathrm{H}, \mathrm{s}, 13 \beta-$ Me), $2.14(3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OA} \mathrm{c}), 2.7(1 \mathrm{H}, \mathrm{obsc} . \mathrm{m}, 9 \alpha-\mathrm{H}), 2.8-2.9$ (2 $\left.\mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.73\left(3 \mathrm{H}, \mathrm{s}, 16 \beta-\mathrm{CO}_{2} \mathrm{Me}\right.$ e, 3.76 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), $4.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,15 \beta-\mathrm{H}), 5.9\left(1 \mathrm{H}, \mathrm{s}\right.$, exch. by $\left.\mathrm{D}_{2} \mathrm{O}, 16 \alpha-\mathrm{OH}\right)$, $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and 7.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{MHz}), 174.9\left(\mathrm{~s}, 16-\mathrm{CO}_{2} \mathrm{Me}\right.$), 171.4 (s, 17ß-OCOM e), 157.5 (s, C-3), 137.9 (s, C-5), 132.4 (s, C-10), 126.3 (d, C-1), 113.6 (d, C-4), 111.6 (d, C-2), 93.7 (s , C-17), 75.9 (d, C-15), 75.6 (s, C-16), 55.1 ($q, 3-0 \mathrm{Me}$), 52.5 (q, $16-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 48.3 and 46.5 (each $\mathrm{s}, \mathrm{C}-13$ and $\mathrm{C}-14$), 40.0 (d, C-8), 37.1 ($d, C-9$), 29.9 (t, C-6), 28.4 (t, C-12), 25.4 ($t, C-7$), 24.4 (t, C-11), $24.0\left(\mathrm{t}, \mathrm{C}-17^{2}\right.$), 21.2 ($\mathrm{q}, 17 \mathrm{\beta}-\mathrm{OCOM} \mathrm{e}$), 17.8 (t , $\left(-17^{1}\right)$ and 13.4 ($q, C-18$) and methyl 17β-acetoxy- $15 \beta, 16 \beta$ -dihydroxy-3-methox y-14,17 α-ethanoestra-1,3,5(10)-triene-16 α carboxylate 29 ($121 \mathrm{mg}, 27 \%$), mp 182-185 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{CO}$); $[a]_{\mathrm{D}}+45\left(\mathrm{c} 1.0\right.$ in CHCl_{3}) (Found: $\mathrm{C}, 67.7 ; \mathrm{H}, 7.1 \% ; \mathrm{M}^{+}, 444$); $v_{\text {max }} / \mathrm{cm}^{-1} 3410,1730$ and $1710 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.23(3 \mathrm{H}, \mathrm{s}, 13 \beta-$ Me), 2.07 ($3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}$), $2.7(1 \mathrm{H}, \mathrm{obsc} . \mathrm{m}, 9 \alpha-\mathrm{H}$), 2.82-3.0 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $3.91\left(3 \mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{CO}_{2} \mathrm{Me}\right.$), $4.11(1 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{H}), 4.45\left(1 \mathrm{H}, \mathrm{s}\right.$, exch. by $\left.\mathrm{D}_{2} \mathrm{O}, 16 \beta-\mathrm{OH}\right), 6.67$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}$), 6.73 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}$) and 7.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 175.2\left(\mathrm{~s}, 16 \alpha-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right.$), 170.7 (s , $17 \beta-O C O M e), 157.4$ (s, C-3), 137.8 (s, C-5), 132.9 (s, C-10), 126.2 (d, C-1), 113.7 (d, C-4), 111.4 (d, C-2), 90.3 (s, C-17), 80.8 ($\mathrm{s}, \mathrm{C}-16$), 79.9 (d, C-15), 55.1 ($\mathrm{q}, 3-\mathrm{OM} \mathrm{e}$), 53.6 ($\mathrm{q}, 16 \alpha-$ $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 50.8 and 48.8 (each s, C-13 and C-14), 36.8 (d, C-9), 34.5 ($\mathrm{d}, \mathrm{C}-8$), 30.7 ($\mathrm{t}, \mathrm{C}-6$), 25.6 ($\mathrm{t}, \mathrm{C}-7$), 23.8 (t, C-11), 23.6 ($\mathrm{t}, \mathrm{C}-17^{1}$), 22.9 (t, C-17²), 21.0 ($\mathrm{q}, 17 \beta-0 \mathrm{COM} \mathrm{e}$) and 15.8 (q , C-18).

M ethyl 17β-acetoxy-15 $\alpha, 16 \alpha$-isopropylidenedioxy-3-methoxy14,17 α-ethanoestra-1,3,5(10)-triene-16 β-carboxylate 30

The diol 28 ($4.37 \mathrm{~g}, 9.84 \mathrm{mmol}$) was treated with aq. perchloric acid (70%; 5.5 ml) in acetone ($440 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ for 2 h . $\mathrm{NaHCO}_{3}(5 \mathrm{~g})$ was added to the mixture which was then concentrated under reduced pressure and diluted with water; the product was isolated by extraction with CHCl_{3}. Work-up followed by chromatography of the residue (5.9 g) on silica gel (150 g) with EtOA c-toluene ($1: 9$) as eluent gave the acetonide 30 (4.04 $\mathrm{g}, 85 \%$), mp 130-134 ${ }^{\circ} \mathrm{C}$ (from M e2CO-M eOH); $[a]_{\mathrm{D}}+57$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 69.1 ; \mathrm{H}, 7.2 \% ; \mathrm{M}^{+}, 484 . \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{7}$ requires C, 69.4; H , 7.5\%; M , 484); $v_{\text {max }} / \mathrm{cm}^{-1} 1740 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.95$ (3 $\mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), 1.35 and 1.61 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{2}$), $2.03(3 \mathrm{H}, \mathrm{s}$, $17 \beta-\mathrm{OAc}), 2.68$ ($1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.4$ and $4.8,9 \alpha-\mathrm{H}$), 2.8-2.91 (2 $\left.\mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.14(1 \mathrm{H}, \mathrm{m}), 3.76\left(3 \mathrm{H}, \mathrm{s}, 16 \beta-\mathrm{CO}_{2} \mathrm{Me}\right), 3.78(3 \mathrm{H}$, s, 3-OM e), $5.0(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.1,15 \beta-\mathrm{H})$, $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H})$, $6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.

16β-H ydroxymethyl-15 $\alpha, 16 \alpha$-isopropylidenedioxy-3-methoxy14,17 α-ethanoestra-1,3,5(10)-trien-17 β-ol 31

LAH ($918 \mathrm{mg}, 80 \mathrm{mmol}$) was added in small portions to a stirred solution of the ester $\mathbf{3 0}(4.04 \mathrm{~g}, 8.4 \mathrm{mmol})$ in THF (50 cm^{3}) at $25^{\circ} \mathrm{C}$ under nitrogen. A fter 3 h at $25^{\circ} \mathrm{C}$, saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the mixture and the product was isolated by extraction with CHCl_{3}. Filtration of the product (4.05 g) through silica gel (90 g) with EtOA c-toluene (2:3) gave the diol $31(3.47 \mathrm{~g}, 100 \%)$ as an oil, $[a]_{\mathrm{D}}+97$ (c $1.0 \mathrm{in} \mathrm{CHCl}_{3}$) (Found: C , 72.2; $\mathrm{H}, 8.2 \% ; \mathrm{M}^{+}, 414 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 72.4 ; \mathrm{H}, 8.3 \%$; M , 414); $v_{\text {max }} / \mathrm{cm}^{-1} 3544 \mathrm{br} ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 0.92(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e})$, 1.48 and 1.62 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{2}$), $2.68(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.3$ and 4.3, $9 \alpha-\mathrm{H}$), 2.74-2.9 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), 3.79
and 4.32 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.9,16 \beta-\mathrm{CH}_{2} \mathrm{OH}\right), 4.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.2$, $15 \beta-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.8 , $2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.

$15 \alpha, 16 \alpha$-I sopropylidenedioxy-3-methoxy-16 β-methyl-14,17 α -ethanoestra-1,3,5(10)-trien-17 β-ol 33

M ethanesulfonyl chloride ($2.1 \mathrm{~cm}^{3}, 24 \mathrm{mmol}$) was added to a solution of the diol $31(3.4 \mathrm{~g}, 8.2 \mathrm{mmol})$ in dry pyridine $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. A fter 1.5 h at $0^{\circ} \mathrm{C}$, the mixture was diluted with water and the product was isolated by extraction with toluene. Work-up followed by chromatography of the residue (4.4 g) on silica gel (100 g) with EtOA c-toluene (3:7) as eluent gave the non-crystalline 16^{1}-methanesulfonate $32(4.04 \mathrm{~g}$, 100%), $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.99(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}$), 1.5 and 1.6 (each 3 $\mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e} 2$), 3.05 ($3 \mathrm{H}, \mathrm{s}, 16^{1}-\mathrm{OM} \mathrm{s}$), 3.75 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), 4.45 and 4.75 (each $\left.1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.1,16-\mathrm{CH}_{2} \mathrm{OM} \mathrm{s}\right), 4.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.4$, $15 \beta-\mathrm{H}), 6.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}$) and 7.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$).

The methanesulfonate $32(4.04 \mathrm{~g}, 8.2 \mathrm{mmol})$ was treated with LAH ($909 \mathrm{mg}, 24 \mathrm{mmol}$) in dry THF ($20 \mathrm{~cm}^{3}$) at $25^{\circ} \mathrm{C}$ under nitrogen for 24 h . Saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ was added to the reaction mixture and the product (2.98 g) was isolated by extraction with toluene Work-up followed by absorption of the residue on silica gel (200 g) and elution with EtOA c-toluene ($3: 17$) gave the 16β-methyl compound $33(2.92 \mathrm{~g}, 89 \%)$, mp 98-102 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+111$ (c 1.0 in CHCl_{3}) (Found: C, 75.3; $\mathrm{H}, 8.6 \% ; \mathrm{M}^{+}, 398 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.3 ; \mathrm{H}, 8.6 \% ; \mathrm{M}, 398$); $v_{\text {max }} / \mathrm{cm}^{-1} 3598 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 0.94(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{OM} \mathrm{e}), 1.45$ and 1.63 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{2}$), $1.54(3 \mathrm{H}, \mathrm{s}, 16 \beta-\mathrm{M} \mathrm{e}$), $2.7(1 \mathrm{H}, \mathrm{td}$, $\mathrm{J} 2 \times 11.8$ and $4.8,9 \alpha-\mathrm{H}), 2.78-2.88\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.73$ (3 $\mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $4.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.6,15 \beta-\mathrm{H}), 6.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8$, $4-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6$, 1-H).
The derived ($\mathrm{Ac}_{2} \mathrm{O}$-p-TsOH-THF, $20^{\circ} \mathrm{C}, 1 \mathrm{~h}$) 17β-acetate 34 had mp 191-193 ${ }^{\circ} \mathrm{C}$ (from CHCl $3^{-}-\mathrm{MeOH}$); $[a]_{\mathrm{D}}+96$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 73.3 ; \mathrm{H}, 8.2 \% ; \mathrm{M}^{+}$, 440. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{5}$ requires C, 73.6 ; H , $8.2 \% ; \mathrm{M}, 440$); $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.99$ ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}$), 1.46 and 1.59 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{E} \mathrm{e}_{2}$), 1.56 ($3 \mathrm{H}, \mathrm{s}, 16 \beta-\mathrm{M} \mathrm{e}$), 2.05 (3 $\mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}), 3.76(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $4.3(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.3,15 \beta-\mathrm{H})$, $6.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and 7.21 (1 H, d, J 8.6, 1-H).

3-M ethox y-16 β-methyl-14,17 α-ethanoestra-1,3,5(10)-triene$15 \alpha, 16 \alpha, 17 \beta$-triol 17 -acetate 35

A solution of the acetonide $34(93 \mathrm{mg}, 0.21 \mathrm{mmol})$ in methanolic iodine ($1 \% ; 13 \mathrm{~cm}^{3}$) was refluxed for 5.5 h , cooled and treated with aq. sodium thiosulfate. Extraction of the reaction mixture with EtOA c and work-up gavea product (80 mg) which was adsorbed on silica gel (10 g). Elution with EtOA c-hexane ($1: 9$) gave mixed fractions (9 mg) followed by the $15 \alpha, 16 \alpha$-diol 35 ($63 \mathrm{mg}, 79 \%$), mp $145-149^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}$ +91 (1.0 in CHCl_{3}) (Found: C, 72.0; H, $8.1 \% ; \mathrm{M}^{+}, 400$. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ requires C, $72.0 ; \mathrm{H}, 8.05 \% ; \mathrm{M}, 400$); $v_{\text {max }} / \mathrm{cm}^{-1} 3482 \mathrm{br}$ and $1710 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.99(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 1.35(3 \mathrm{H}, \mathrm{s}, 16 \beta-$ Me), 2.12 ($3 \mathrm{H}, \mathrm{s}, 17 \mathrm{~B}-\mathrm{OAc}$), $2.62(1 \mathrm{H}, \mathrm{obsc} . \mathrm{m}, 9 \alpha-\mathrm{H}), 2.76-2.9$ $\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.1,15 \beta-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e})$, $6.6(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and 7.21 ($\mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$).

The derived (LAH-THF, $20^{\circ} \mathrm{C}$) $15 \alpha, 16 \alpha, 17 \beta$-triol 36 had mp $183-185^{\circ} \mathrm{C}$ (from CHCl 3 -hexane); $[a]_{\mathrm{D}}+77$ (c 0.6 in CHCl_{3}) (Found: M^{+}, 358.214. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$ requires $\mathrm{M}, 358.214$); $\delta_{\mathrm{H}}(200$ $\mathrm{M} \mathrm{Hz}) 0.93$ ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), 1.44 ($3 \mathrm{H}, \mathrm{s}, 16 \beta-\mathrm{M} \mathrm{e}$), 2.78-2.9 (2 $\left.\mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.72\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.2\right.$ and $1.3 \rightarrow \mathrm{~d}$, J 1.3 on $\mathrm{D}_{2} \mathrm{O}$ exch., $15 \beta-\mathrm{H}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), 6.64 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,4-\mathrm{H}$), 6.73 (1 H , dd, J 8.6 and $2.4,2-\mathrm{H}$) and 7.18 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$).

15 β,16 β-I sopropylidenedioxy-3-methoxy-16 α-methyl-14,17 α -ethanoestra-1,3,5(10)-trien-17 β-ol 40

A reaction sequence similar to that described in the foregoing experiments was used to convert the 16α-carboxylate $\mathbf{2 9}$ into
the 16α-methyl compound 40 . The intermediates and product were characterised as follows.

M ethyl 17β-acetoxy- $15 \beta, 16 \beta$-isopropylidenedioxy-3-methoxy14,17 α-ethanoestra-1,3,5(10)-triene-16 α-carboxylate 37, double mp 178-182 and $187-191^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[a]_{\mathrm{D}}+4$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 69.1 ; \mathrm{H}, 7.2 \% ; \mathrm{M}^{+}, 484 . \mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{7}$ requires C, 69.4; H , 7.5\%; M , 484); $v_{\text {max }} / \mathrm{cm}^{-1} 1732 ; \delta_{\mathrm{H}} 1.22(3 \mathrm{H}$, $\mathrm{s}, 13 \beta-\mathrm{Me}$), 1.35 and 1.55 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{2}$), $2.09(3 \mathrm{H}, \mathrm{s}, 17 \beta-$ OA) , $2.66(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.3$ and $4.0,9 \alpha-\mathrm{H}), 2.8-3.02(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), 4.64 (1 $\mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{H}), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.
16α-H ydroxymethyl-15 $\beta, 16 \beta$-isopropylidenedioxy- 3 -methoxy14,17 α-ethanoestra-1,3,5(10)-trien-17 β-ol 38, gum; $[a]_{\mathrm{D}}+5$ (c 1.0 in CHCl_{3}) (Found: C, $72.6 ; \mathrm{H}, 8.2 \% ; \mathrm{M}^{+}, 414 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}$ requires C, 72.4; H, 8.3\%; $\mathrm{M}, 414$); $v_{\text {max }} / \mathrm{cm}^{-1} 3544 \mathrm{br} ; \delta_{\mathrm{H}}(200$ $\mathrm{M} \mathrm{Hz}) 1.31\left(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}\right.$ e), 1.41 and 1.56 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{2}$), $2.64(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.2$ and $4.2,9 \alpha-\mathrm{H}), 2.76-3.0\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $3.84(1 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{H}$), 4.02 and 4.1 (each 1 H, d, after $\mathrm{D}_{2} \mathrm{O}$ exch., J $11.8,16-\mathrm{H}_{2}$), $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H})$, 6.73 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}$) and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.
$15 \beta, 16 \beta$-I sopropylidenedioxy-3-methoxy-16 α-methyl-14,17 α -ethanoestra-1,3,5(10)-trien-17 β-ol 40, gum; $[\alpha]_{\mathrm{D}}+62$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 75.4 ; \mathrm{H}, 8.7 \% ; \mathrm{M}^{+}, 398 . \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}$ requires C, $75.3 ; \mathrm{H}, 8.6 \%$; M , 398); $v_{\text {max }} / \mathrm{cm}^{-1} 3572 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.26$ (3 $\mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}$), 1.43 and 1.54 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{CM} \mathrm{e}_{2}$), $1.5(3 \mathrm{H}, \mathrm{s}$, $16 \alpha-\mathrm{M} \mathrm{e}), 2.65(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.3$ and $4.3,9 \alpha-\mathrm{H}), 2.8-3.0(2 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}), 3.92(1 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{H}), 6.6(1 \mathrm{H}, \mathrm{d}$, $\mathrm{J} 2.8,4-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6, 1-H).

A cetylation ($\mathrm{Ac}_{2} \mathrm{O}-\mathrm{p}-\mathrm{TsOH}-\mathrm{THF}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}$) of $\mathbf{4 0}$ gavecompound $\mathbf{2 4}$, identical with that prepared in a previous experiment.

D eprotection of the acetonide 24

Treatment of compound 24 ($970 \mathrm{mg}, 2.2 \mathrm{mmol}$) with methanolic iodine in THF as described in a previous experiment, followed by flash chromatography of the product (914 mg) on silica gel (70 g) with EtOAc-hexane ($7: 13$), gave starting material (17 mg) followed by an inseparable mixture (794 mg , 91%) of the isomers 22 and 41. A subsequent experiment (see later) resulted in isolation of pure 3-methoxy-16 α -methyl-14,17 α-ethanoestra-1,3,5(10)-triene-15 $\beta, 16 \beta, 17 \beta$-triol 15 -acetate 41 ($258 \mathrm{mg}, 32 \%$), $\mathrm{mp} 183-186^{\circ} \mathrm{C}$ (from CHCl_{3} MeOH); $[a]_{\mathrm{D}}-17$ (c 1.0 in CHCl_{3}) (Found: C, 72.1; $\mathrm{H}, 7.7 \%$; $\mathrm{M}^{+}, 400 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ requires $\mathrm{C}, 72.0 ; \mathrm{H}, 8.05 \% ; \mathrm{M}, 400$); $v_{\max } /$ $\mathrm{cm}^{-1} 3597$ and 1721 ; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.14$ ($3 \mathrm{H}, \mathrm{s}, 13 \alpha-\mathrm{M} \mathrm{e}$), 1.48 (3 $\mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{Me}$), 2.05 ($3 \mathrm{H}, \mathrm{s}, 15 \beta-\mathrm{OA}$ c), $2.64(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.2$ and 4.8, $9 \alpha-\mathrm{H}), 2.78-2.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e})$, 4.45 ($1 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{H}$), $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}$), $6.73(1 \mathrm{H}, \mathrm{dd}$, J 8.6 and $2.8,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.

Hydrolysis (LAH-THF, $25^{\circ} \mathrm{C}$) of the mixture ($65 \mathrm{mg}, 0.16$ mmol) of $\mathbf{2 2}$ and 41 gave the corresponding $15 \beta, 16 \beta, 17 \beta$-triol 42 ($57 \mathrm{mg}, 98 \%$), mp 190-193 ${ }^{\circ} \mathrm{C}$ (from CHCl ${ }_{3}$-hexane); $[\alpha]+22$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 74.0 ; \mathrm{H}, 8.3 \% ; \mathrm{M}^{+}, 358 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$ requires C, 73.7; H, $8.4 \% ; \mathrm{M}, 358$); $v_{\text {max }} / \mathrm{cm}^{-1} 3552 ; \delta_{\mathrm{H}}(200$ M Hz) 1.11 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.9,13 \beta-\mathrm{M} \mathrm{e}$), 1.35 ($3 \mathrm{H}, \mathrm{s}, 16 \alpha-\mathrm{M} \mathrm{e}$), 2.8$3.0\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right)$, $3.6(1 \mathrm{H}, \mathrm{s}, 15 \alpha-\mathrm{Me}$), 3.75 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and 7.21 (1 H, d, J 8.6, 1-H).

M ethyl 17β-acetoxy-3-methoxy-15 α-phenylthio-14,17 α-ethano-

 estra-1,3,5(10)-triene-16 β-carboxylate 43Diisopropylethylamine ($1.6 \mathrm{~cm}^{3}$) was added to a solution of the unsaturated ester $27(3.06 \mathrm{~g}, 7.46 \mathrm{mmol})$ in thiophenol ($10 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$. A fter 48 h at $20^{\circ} \mathrm{C}$, flash chromatography of the reaction mixture on silica gel (200 g) with EtOA c-hexane ($1: 9$) as eluent gave the 15α-phenylthio compound 43 ($3.84 \mathrm{~g}, 98 \%$), mp $153-155^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{OH}$); $[a]_{\mathrm{D}}+42\left(\mathrm{c} 0.8\right.$ in CHCl_{3}) (Found: C, 71.35; H, 7.0\%; $\mathrm{M}^{+}, 520 . \mathrm{C}_{31} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{~S}$ requires C , $71.5 ; \mathrm{H}, 7.0 \% ; \mathrm{M}, 520$); $v_{\max } / \mathrm{cm}^{-1} 1734,1607,1599,1580$ and

1571; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.23(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 1.96(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ 2×11.3 and $2.3,8 \beta-\mathrm{H}), 2.02(3 \mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}), 2.16(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ 2×13.1 and 3.6), $2.72(1 \mathrm{H}, \mathrm{obsc} . \mathrm{m}, 9 \alpha-\mathrm{H}), 2.82-2.92(2 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}_{2}$), $3.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.6$ and $2.5,15 \beta-\mathrm{H}), 3.53(3 \mathrm{H}, \mathrm{s}, 16 \beta-$ $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.78(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $3.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6,16 \alpha-\mathrm{H}), 6.64$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.4,2-\mathrm{H})$ and $7.15-$ 7.45 ($6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $15 \alpha-\mathrm{SPh}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}$) 173.9 ($\mathrm{s}, 16 \beta-$ $\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 170.2 ($\mathrm{s}, 17 \beta-\mathrm{OCOM}$ e), 157.5 ($\mathrm{s}, \mathrm{C}-3$), 137.9 ($\mathrm{s}, \mathrm{C}-5$), 136.2 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 131.9 ($\mathrm{s}, \mathrm{C}-10$), 132.0 ($2 \times \mathrm{d}, \mathrm{C}-2^{\prime}$ and $\mathrm{C}-6^{\prime}$), 128.9 ($2 \times \mathrm{d}, \mathrm{C}-3^{\prime}$ and $\mathrm{C}-5^{\prime}$), 127.2 ($\mathrm{d}, \mathrm{C}-4^{\prime}$), 126.2 ($\mathrm{d}, \mathrm{C}-1$), 113.8 (d, C-4), 111.5 (d, C-2), 90.8 (s, C-17), 58.9 ($2 \times \mathrm{d}, \mathrm{C}-15$ and C-16), 55.2 ($q, 3-0 \mathrm{Me}$ e), 51.7 ($q, 16-\mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), 51.6 and 49.8 (each $\mathrm{s}, \mathrm{C}-13$ and $\mathrm{C}-14$), 37.6 ($\mathrm{d}, \mathrm{C}-8$), 29.7 ($\mathrm{t}, \mathrm{C}-6$), 28.8 (t , C-12), 28.6 ($\mathrm{t}, \mathrm{C}-17^{1}$), 25.7 ($\mathrm{t}, \mathrm{C}-7$), 24.1 (t, C-11), 23.8 (t , C-172), 2.14 ($\mathrm{q}, 17 \mathrm{\beta}-\mathrm{OCOM} \mathrm{e)} \mathrm{and} 15.6$ ($\mathrm{q}, \mathrm{C}-18$).

3-M ethoxy-16 β-methyl-15 α-phenylthio-14,17 α-ethanoestra-1,3,5(10)-trien-17ק-ol 46

The ester $43(3.84 \mathrm{~g}, 7.38 \mathrm{mmol})$ was treated with LA H (1.6 g , $44.2 \mathrm{mmol})$ in THF ($50 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ for 45 min . The mixture was treated with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, added slowly to destroy excess reagent, and then extracted with EtOAc. Work-up gave 16β -hydroxymethyl-3-methoxy-15 α-phenylthio-14,17 α-ethanoestra-
1,3,5(10)-trien-17ß-ol 44 ($3.32 \mathrm{~g}, 100 \%$), mp 207-210 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}); $[a]_{\mathrm{D}}+41\left(\mathrm{c} 0.8\right.$ in CHCl_{3}) (Found: $\mathrm{C}, 74.8 ; \mathrm{H}, 7.5 ; \mathrm{S}$, $6.6 \% ; \mathrm{M}^{+}, 450 . \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 74.6 ; \mathrm{H}, 7.6 ; \mathrm{S}, 7.1 \%$; $\mathrm{M}, 450) ; v_{\text {max }} / \mathrm{cm}^{-1} 3593 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.2(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me})$, 2.74 (1 H, br d, J 6.1, $15 \beta-\mathrm{H}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), 3.8 (2 H obsc. m, $16 \beta-\mathrm{CH}_{2} \mathrm{OH}$) , $6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}$, J 8.6 and $2.4,2-\mathrm{H}$) and $7.15-7.45(6 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}$ and $15 \alpha-$ SPh).
M ethanesulfonation (M SCl -pyridine, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$) of the diol 44 ($3.32 \mathrm{~g}, 7.38 \mathrm{mmol}$), followed by dilution of the mixture with water and isolation of the product by extraction with EtOAc gave material (3.88 g) which was flash chromatographed on silica gel (100 g) with EtOA c-toluene (2:3) as eluent to give the non-crystalline 16 β-(methanesulfonyloxy)methyl derivative 45 ($3.12 \mathrm{~g}, 81 \%$).
The methanesulfonate $45(3.12 \mathrm{~g}, 5.9 \mathrm{mmol})$ was treated with LAH ($876 \mathrm{mg}, 29 \mathrm{mmol}$) in THF ($50 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ under nitrogen for 2.4 h . Excess reagent was destroyed by cautious addition of aq. $\mathrm{NH}_{4} \mathrm{Cl}$ to the mixture, and the product (2.6 g) was isolated by extraction with EtOA c. F lash chromatography on silica gel (100 g) with EtOA c-toluene (1:9) as eluent gave the 16β methyl compound 46 ($2.46 \mathrm{~g}, 96 \%$), mp $135-136^{\circ} \mathrm{C}$ (from MeOH); $[a]_{\mathrm{D}}+56$ (c 1.0 in CHCl_{3}) (Found: M^{+}, 434.229. $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{M}, 434.228$); $v_{\text {max }} / \mathrm{cm}^{-1} 3594 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz})$ 0.9 (3 H, d, J 7.2, 16 -M e), 1.1 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.9,13 \beta-\mathrm{Me}$), 1.42 (1 $\mathrm{H}, \mathrm{dq}, \mathrm{J} 12.4$ and $3 \times 2.6)$, $1.62(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.4$ and $3 \times 2.5)$, 1.85 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.4,9.5$ and 3.1), $1.98(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.5$ and 2.1), 2.05 ($1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 12.7$ and 3.4), 2.41 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7.0,5.7$ and 2.5), 2.66 (1 H, obsc., $8 \beta-\mathrm{H}$), 2.6-2.86 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 2.84 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.6,15 \beta-\mathrm{H}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4$, $4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.4,2-\mathrm{H})$ and $7.15-7.45(6 \mathrm{H}, \mathrm{m}$, $1-\mathrm{H}$ and $15 \alpha-\mathrm{SPh})$.

0 xidation- elimination of the phenylthio compound 46

Aq. sodium periodate ($0.5 \mathrm{~mol} \mathrm{dm}{ }^{3}, 50 \mathrm{~cm}^{3}$) was added to a stirred solution of the phenylthio compound $46(2.46 \mathrm{~g}, 5.66$ mmol) in ethanol-THF ($3: 1,80 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$. After 24 h at $20^{\circ} \mathrm{C}$, the reaction mixture was concentrated under reduced pressure and diluted with water. The product was isolated by extraction with chloroform. F lash chromatography of the residue $(2.7 \mathrm{~g})$ on silica gel (200 g) with EtOA c-toluene ($2: 5$) as eluent gave the 15α-phenylsulfinyl compound 47 ($1.9 \mathrm{~g}, 75 \%$), which was dissolved in triethylamine ($0.2 \mathrm{~cm}^{3}$) and benzene (30 cm^{3}), and heated at $115^{\circ} \mathrm{C}$ (sealed tube) for 16 h . The reaction mixture was concentrated under reduced pressure and the residue (1.4 g) was flash chromatographed on silica gel (60 g) with EtOAc-toluene (1:9) as eluent, to give 3-methoxy-16-methyl-

14,17 α-ethanoestra-1,3,5(10),15-tetraen-17ק-ol 48 ($1.4 \mathrm{~g}, 99 \%$), $\mathrm{mp} 113-114^{\circ} \mathrm{C}$ (from EtOAc-M eOH); $[a]_{D}-22$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 81.8 ; \mathrm{H}, 8.7 \% ; \mathrm{M}^{+}, 324 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C, 81.4; H , 8.7\%; M , 324); $v_{\text {max }} / \mathrm{cm}^{-1} 3598 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.84$ (3 $\mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), 1.73 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.6,16-\mathrm{Me}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), $5.62(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 3 \times 1.6,15-\mathrm{H}), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.7(1 \mathrm{H}$, dd, J 8.6 and $2.7,2-\mathrm{H}$) and $7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}) ; \delta_{\mathrm{c}}(100$ M Hz) 157.4 ($\mathrm{s}, \mathrm{C}-3$), 144.7 (s, C-16), 137.9 ($\mathrm{s}, \mathrm{C}-5$), 133.4 (s , C-10), 127.5 (d, C-15), 126.2 (d, C-1), 113.9 (d, C-4), 111.4 (d, C-2), 91.0 (s, C-17), 56.8 (s, C-14), 55.2 ($q, 3-0 \mathrm{M} \mathrm{e}$), 54.1 (s , C-13), 37.4 (d, C-9), 37.2 (d, C-8), 30.1 (t, C-6), 27.8 (t, C-12), 27.5 (t, C-171), 26.6 ($\mathrm{t}, \mathrm{C}-17^{2}$), 25.6 ($\mathrm{t}, \mathrm{C}-7$), 24.6 (t, C-11), 14.7 ($\mathrm{q}, \mathrm{C}-18$) and 12.0 ($\mathrm{q}, 16-\mathrm{M} \mathrm{e}$).

The derived ($\mathrm{Ac}_{2} \mathrm{O}$-DMAP-pyridine, $20^{\circ} \mathrm{C}, 72 \mathrm{~h}$) $17 \mathrm{\beta}$ acetate 49 had $\mathrm{mp} 108-110^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}-40$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 78.4 ; \mathrm{H}, 8.4 \% ; \mathrm{M}^{+}, 366 . \mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $78.65 ; \mathrm{H}, 8.25 \% ; \mathrm{M}, 366$); $v_{\max } / \mathrm{cm}^{-1} 1729 ; \delta_{\mathrm{H}}(200$ $\mathrm{M} \mathrm{Hz}) 0.89(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), $1.74(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5,16-\mathrm{M} \mathrm{e}$), 2.1 (3 $\mathrm{H}, \mathrm{s}, 17 \beta-\mathrm{OAc}$), 3.78 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), 5.67 ($1 \mathrm{H}, \mathrm{q}, \mathrm{J} 3 \times 1.5$, $15-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.4,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.4 , 2-H) and 7.18 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$).

Hydroxylation of the 16 -methyl Δ^{15}-compounds 48 and 49

(a) Treatment of the 17β-alcohol 48 ($340 \mathrm{mg}, 1.05 \mathrm{mmol}$) with osmium tetraoxide ($320 \mathrm{mg}, 1.26 \mathrm{mmol}$) in pyridine ($10 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ for 72 h , followed by standard work-up and chromatography of the product (360 mg) on silica gel (40 g) with EtOA ctoluene ($1: 1$) as eluent, gave the $15 \beta, 16 \beta, 17 \beta$-triol $42(203 \mathrm{mg}$, 50%) followed by the $15 \alpha, 16 \alpha, 17 \beta$-triol 36 ($149 \mathrm{mg}, 40 \%$).
(b) Similar treatment of the 17β-acetate $49(1.4 \mathrm{~g}, 3.8 \mathrm{mmol})$, and chromatography of the product (1.8 g) on silica gel (150 g) with EtOA c-toluene (3:7) as eluent, gave the 17β-acetoxy $15 \alpha, 16 \alpha$-diol 35 ($958 \mathrm{mg}, 63 \%$), followed by the 17β-acetoxy 15ß,16ß-diol 22 ($441 \mathrm{mg}, 29 \%$).

0 xidative cleavage of the 15,16 -diols

(a) The following procedure is representative Aq. sodium periodate ($0.5 \mathrm{~mol} \mathrm{dm}^{3} ; 23 \mathrm{~cm}^{3}$) was added to a solution of the diols $22+35(1.38 \mathrm{~g}, 3.5 \mathrm{mmol})$ in ethanol $\left(100 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$. A fter 4 h at $20^{\circ} \mathrm{C}$, the mixture was diluted with water and the product (1.4 g) was isolated by extraction with chloroform. Flash chromatography of the residue on silica gel $(90 \mathrm{~g})$ with EtOA c-hexane ($1: 4$) as eluent gave 17-acetoxy-3-methoxy-20-ox0-19-nor-143-pregna-1,3,5(10)-triene-14-carbaldehyde 50 ($1.24 \mathrm{~g}, 90 \%$), mp $174-177{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+74$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 72.3 ; \mathrm{H}, 7.6 \%$; M^{+}, 398. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5}$ requires $\mathrm{C}, 72.3 ; \mathrm{H}, 7.6 ; \mathrm{M}, 398) ; v_{\max } / \mathrm{cm}^{-1} 1731$ and 1711 ; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.18(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.34(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 3 \times 11.4$ and $7,7 \alpha-\mathrm{H}), 1.52(1 \mathrm{H}, \mathrm{obsc} . \mathrm{m}, 7 \beta-\mathrm{H}), 1.74(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 12$ and $3.3,8 \beta-\mathrm{H}), 2.04(3 \mathrm{H}, \mathrm{s}, 17 \alpha-\mathrm{OAc}), 2.1(1 \mathrm{H}, \mathrm{m}), 2.15(3 \mathrm{H}$, $\mathrm{s}, 20-\mathrm{Me}), 2.6(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 12$ and $3.3,9 \alpha-\mathrm{H}), 2.7-2.8(2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{2}\right), 2.92(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 16.9,10.0$ and $6.9,15 \beta-\mathrm{H}), 3.77(3 \mathrm{H}, \mathrm{s}$, 3-OM e), 6.6 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}$), 6.7 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.8 , $2-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$ and 9.67 ($1 \mathrm{H}, \mathrm{s}, 14 \beta-\mathrm{CHO}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 209.2(\mathrm{~s}, \mathrm{C}-20), 207.2(\mathrm{~d}, 14 \beta-\mathrm{CH} 0), 170.9(\mathrm{~s}, 17 \alpha-$ OCOM e), 157.7 (s, C-3), 137.5 (s, C-5), 131.4 (s, C-10), 126.4 (d, C-1), 113.4 (d, C-4), 111.9 (d, C-2), 96.4 (s, C-17), 61.0 (s, C-14), 55.2 ($q, 3-0 \mathrm{M} \mathrm{e}$), 51.4 (s, C-13), 40.1 (d, C-81), 36.9 (d, C-9), 33.6 (t, C-12), 32.3 (t, C-15), 30.2 (t, C-6), 26.9 (q, 20-M e), 25.9 (t, C-16), 25.1 (t, C-11), 24.1 (t, C-7), 21.1 ($q, 17 \alpha-$ OCOM e) and 16.5 ($q, C-18$).
(b) Similar treatment of the 15,16,17-triols $\mathbf{3 6}$ or $\mathbf{4 2}$ for 2 h at $20^{\circ} \mathrm{C}$ gave the 17α-alcohol 51 (100%), mp $161-163^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[a]_{\mathrm{D}}+134$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 73.9$; H , 7.9%; $\mathrm{M}^{+}, 356 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{4}$ requires C, 74.1; $\mathrm{H}, 7.9 \%$; $\mathrm{M}, 356$); $v_{\text {max }} / \mathrm{cm}^{-1} 3605$ and 1708 .

Intramolecular aldol condensation of the 14-carbaldehyde 50

(a) Compound $50(100 \mathrm{mg}, 0.25 \mathrm{mmol})$ was treated with hydrochloric acid ($12 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1 \mathrm{~cm}^{3}$) in THF $\left(9 \mathrm{~cm}^{3}\right)$ at $57^{\circ} \mathrm{C}$ for

2 h . The cooled reaction mixture was neutralised with saturated aq. NaHCO_{3}, and the product was isolated by extraction with CHCl_{3}. Work-up and chromatography of the residue (90 mg) on silica gel (9 g) with EtOA c-hexane ($3: 7$) as eluent gave 3 -methoxy-17 ${ }^{1}$-oxo-14,17 β-prop- 17^{2}-eno-14 β-estra- $1,3,5(10)$ -trien-17 α-yl acetate 52 ($72 \mathrm{mg}, 76 \%$), mp 170-172 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); [$\left.a\right]_{\mathrm{D}}-1$ (c 1.0 in CHCl_{3}) (Found: C, 75.9; H 7.3\%; $\mathrm{M}^{+}, 380 . \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 75.8 ; \mathrm{H}, 7.4 \% ; \mathrm{M}, 380$); $v_{\text {max }} / \mathrm{cm}^{-1} 1739$ and 1694; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.95(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e})$, $2.17(3 \mathrm{H}, \mathrm{s}, 17 \alpha-\mathrm{OA}$ c), $2.8(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 10.9$ and $3.9,9 \alpha-\mathrm{H}$), 2.9-3.0 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.79(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), $6.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.9$, $17^{2}-\mathrm{H}$), $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.8 , 2-H), $7.17\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.9,17^{3}-\mathrm{H}\right)$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.
(b) Treatment of compound $50(436 \mathrm{mg}, 1.1 \mathrm{mmol})$ with toluene-p-sulfonic acid ($623 \mathrm{mg}, 3.1 \mathrm{mmol}$) in benzene ($10 \mathrm{~cm}^{3}$) under reflux for 1.75 h , followed by work-up as described above gave 17α-hydroxy-3-methoxy-14,17 β-prop- 17^{2}-eno-14 β-estra-1,3,5(10)-trien-17 ${ }^{1}$-one 53 ($370 \mathrm{mg}, 100 \%$), mp $158-161^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+117$ (c 1.0 in CHCl_{3}) (Found: C , 78.3; $\mathrm{H}, 7.6 \%$; M^{+}, 338. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.1 ; \mathrm{H}, 7.7 \%$; M , 338); $v_{\text {max }} / \mathrm{cm}^{-1} 3480$ and 1677; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 243\left(\varepsilon / \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1} 16426$); $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.73(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 2.72$ (1 $\mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.3$ and $4.3,9 \alpha-\mathrm{H}), 2.81-2.9\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.71(3$ H, s, 3-OM e), $6.07\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8,17^{2}-\mathrm{H}\right), 6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8$, 4-H), 6.73(1 H, dd, J 8.6 and 2.8, 2-H), 7.17 (1 H, d, J 8.6, 1-H) and $7.26\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.8,17^{3}-\mathrm{H}\right)$; $\delta_{\mathrm{c}}(50 \mathrm{MHz}) 203.0\left(\mathrm{~s}, \mathrm{C}-17^{1}\right)$, 158.9 ($\mathrm{d}, \mathrm{C}-17^{3}$), 157.6 ($\mathrm{s}, \mathrm{C}-3$), 137.4 ($\mathrm{s}, \mathrm{C}-5$), 132.3 ($\mathrm{s}, \mathrm{C}-10$), 126.2 (d, C-1), 125.0 (d, C-17²), 113.3 (d, C-4), 111.6 (d, C-2), 88.7 ($\mathrm{s}, \mathrm{C}-17$), 55.2 ($\mathrm{q}, 3-\mathrm{OM} \mathrm{e}$), 52.5 ($2 \mathrm{C}, \mathrm{s}, \mathrm{C}-13$ and $\mathrm{C}-14$), 38.7 (d, C-8), 37.4 (d, C-9), 30.2 (t, C-6), 28.5 ($2 \mathrm{t}, \mathrm{C}-11$ and $\mathrm{C}-12$), 25.6 ($\mathrm{t}, \mathrm{C}-15$), $25.0(\mathrm{t}, \mathrm{C}-16$), 24.0 ($\mathrm{t}, \mathrm{C}-7$) and 13.8 (q , C-18).

14-A cetonyl-3-methoxy-14阝-estra-1,3,5(10)-trien-17-one 55

Palladium(II) chloride ($142 \mathrm{mg}, 0.8 \mathrm{mmol}$) and copper(I) chloride ($395 \mathrm{mg}, 3.99 \mathrm{mmol}$) were added to water-dimethylformamide ($1: 10 ; 41 \mathrm{~cm}^{3}$), and the mixture was stirred vigorously at $20^{\circ} \mathrm{C}$ for 2.5 h under an oxygen atmosphere. 14A llyl-3-methoxy-14ß-estra-1,3,5(10)-trien-17-one 54 (500 mg , 1.54 mmol) was added to the mixture which was then kept at $65^{\circ} \mathrm{C}$ for 5 h , before being poured into water. The product (627 mg) was isolated by extraction with toluene and adsorbed on silica gel (55 g). Elution with EtOA c-toluene ($1: 9$) gave starting material (22 mg) and uncharacterised material (191 mg), followed by the diketone 55 as an oil ($363 \mathrm{mg}, 69 \%$), $[a]_{\mathrm{D}}+8$ (c 0.8 in CHCl_{3}) (Found: M^{+}, 340.203. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$ requires M , 340.204); $v_{\text {max }} / \mathrm{cm}^{-1} 1726 \mathrm{br} ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 1.01$ (3 H, s, $13 \beta-$ Me), 2.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 2.39 and 2.62 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.2$, $\left.14^{1}-\mathrm{H}_{2}\right), 2.83-2.91\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}), 6.63(1$ $\mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7$ and $2.7,2-\mathrm{H})$ and 7.21 (H, d, J 8.7, 1-H).

Intramolecular aldol condensation of the diketone 55

M ethanolic potassium hydroxide ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 5.5 \mathrm{~cm}^{3}$) was added to a stirred solution of the diketone $55(470 \mathrm{mg}, 1.38$ $\mathrm{mmol})$ in THF ($17 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ under nitrogen. A fter 30 min at $20^{\circ} \mathrm{C}$, the reaction was complete (TLC), and water was added followed by aqueous hydrochloric acid ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3 \mathrm{~cm}^{3}$). Extraction with toluene and work-up gave material (420 mg) which was adsorbed on silica gel (21 g). Elution with EtOA ctoluene ($2: 3$) gave an isomeric mixture ($\sim 2: 1$ by N M R, 27 mg) formulated as ($16^{1} \mathrm{R} / \mathrm{S}$)-161-hydroxy-3-methoxy-16 ${ }^{1}$-methyl14,16 β-ethano-14 β-estra-1,3,5(10)-trien-17-ones $56, v_{\text {max }} / \mathrm{cm}^{-1}$ 3584 and $1733 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.04(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e})$ and 1.35 (3 $\mathrm{H}, \mathrm{s}, 16^{1} \xi-\mathrm{M} \mathrm{e}$) (minor component); 1.16 ($3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}$) and $1.45\left(3 \mathrm{H}, \mathrm{s}, 16^{1} \xi-\mathrm{M} \mathrm{e}\right.$) (major component); and 2.84-2.93 (2 H m, 6- H_{2}), 3.78 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), 6.64 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.9,4-\mathrm{H}$), 6.73 (1 H , dd, 8.6 and $2.9,2-\mathrm{H})$ and $7.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$; m/z $340.203\left(\mathrm{M}^{+}\right)$, followed by mixed fractions (49 mg) and 17α -hydroxy-3-methox y-14,17 β-propano-14 β-estra-1,3,5(10)-trien-

172ㅇone 57 ($327 \mathrm{mg}, 70 \%$), mp $215-217^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ M eOH); $[a]_{\mathrm{D}}+11$ (c 1.0 in CHCl_{3}) (Found: C, 77.4; $\mathrm{H}, 8.4 \%$; $\mathrm{M}^{+}, 340 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.6 ; \mathrm{H}, 8.3 \%$; M, 340); $\delta_{\mathrm{H}}(400$ $\mathrm{MHz}) 1.06(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 1.5(1 \mathrm{H}, \mathrm{qd}, \mathrm{J} 3 \times 12.3$ and 4.7$)$, $2.04(1 \mathrm{H}, \mathrm{qt}, \mathrm{J} 3 \times 13.1$ and $2 \times 3.6)$, $2.2(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.4$ and $\left.2.6,17^{3}-\mathrm{H}\right), 2.4(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.4$ and $3 \times 3.8,11 \alpha-\mathrm{H}), 2.49(1 \mathrm{H}$, dd, J 17.4 and 2, $\left.17^{1}-\mathrm{H}\right), 2.51\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17.4\right.$ and $\left.2,17^{3}-\mathrm{H}\right)$, 2.63 ($1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 14.6$ and $3.8,9 \alpha-\mathrm{H}$), 2.8 ($1 \mathrm{H}, \mathrm{obsc}$. dd, J 17.4 and $\left.2.8,17^{1}-\mathrm{H}\right), 2.8-2.84\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}$, 3-OM e), $6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.7 , $2-\mathrm{H}$) and $7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}) ; \delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 209.7\left(\mathrm{~s}, \mathrm{C}-17^{2}\right)$, 157.6 (s, C-3), 137.6 (s, C-5), 132.4 (s, C-10), 126.5 (d, C-1), 113.5 (d, C-4), 111.8 (d, C-2), 81.2 (s, C-17), 55.2 ($\mathrm{q}, 3-0 \mathrm{M} \mathrm{e}$), $53.4\left(\mathrm{t}, \mathrm{C}-17^{1}\right), 50.6\left(\mathrm{t}, \mathrm{C}-17^{3}\right), 45.9$ and 45.2 (each $\mathrm{s}, \mathrm{C}-13$ and C-14), 42.0 (d, C-8), 37.5 (d, C-9), 34.9 (t, C-16), 30.3 (t, C-6), 28.9 (t, C-12), 26.0 (t, C-15), 25.8 ($\mathrm{t}, \mathrm{C}-11$), 23.3 ($\mathrm{t}, \mathrm{C}-7$) and 13.5 ($q, C-18$).

H ydride reduction of the 17^{2}-ketone 57

The ketone 57 ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$) was treated with LAH (111 $\mathrm{mg}, 2.9 \mathrm{mmol})$ in THF $\left(14 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 1 h . Excess of reagent was destroyed by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ to the mixture which was then concentrated under reduced pressure. Extraction with EtOA c and work-up gave the product as a colourless oil (200 mg), which was adsorbed on silica gel (20 g). Elution with EtOA c-toluene ($7: 13$) gave ($17^{2} \mathrm{R}$)-3-methoxy-14,17ß-propano-14ß-estra-1,3,5(10)-triene-17 $\alpha, 17^{2}$-diol 58 (70 $\mathrm{mg}, 35 \%$), mp 179-182 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[a]_{\mathrm{D}}+9$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 77.3 ; \mathrm{H}, 9.0 \% ; \mathrm{M}^{+}$, 342. $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, 77.2; H , 8.8\%; M , 342); $v_{\text {max }} / \mathrm{cm}^{-1} 3602 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.82$ (3 H, s, 13ß-M e), 2.55-2.69 (1 H, m, 9 1 -H), 2.76-2.85 ($2 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{2}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}\right.$ e), $4.27\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 2 \times 6.2,17^{2}-\mathrm{H}\right), 6.62$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}$), $6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}$) and 7.23 (1 H, d, J 8.6, 1-H); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 157.5$ (s, C-3), 137.9 (s, C-5), 133.4 (s, C-10), 126.4 (d, C-1), 113.5 (d, C-4), 111.6 (d, C-2), 80.8 (s, C-17), 66.3 (d, C-172), 55.2 ($q, 3-0 \mathrm{Me}$), 48.4 and 46.2 (each s, C-13 and C-14), 44.4 (t, C-17 ${ }^{1}$), 42.2 (d, C-8), 41.0 ($\mathrm{t}, \mathrm{C}-17^{3}$), 36.9 (d, C-9), 34.0 (t, C-16), 30.5 (t, C-6), 28.6 (t, $\mathrm{C}-12$), 25.9 ($\mathrm{t}, \mathrm{C}-15$), 24.6 ($\mathrm{t}, \mathrm{C}-11$), 23.5 ($\mathrm{t}, \mathrm{C}-7$) and 13.5 (q , C-18); followed by ($17^{2} \mathrm{~S}$)-3-methox y-14,17 β-propano-14 β-estra-1,3,5(10)-triene-17a,17²-diol 59 ($113 \mathrm{mg}, 56 \%$), mp $185-188^{\circ} \mathrm{C}$ (from EtOA c); $[a]_{\mathrm{D}}+5$ (c 1.0 in CHCl_{3}) (Found: C, 77.0; H, $\left.8.95 \% ; \mathrm{M}^{+}, 342\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3601 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.97(3 \mathrm{H}, \mathrm{s}$, $13 \beta-\mathrm{M} \mathrm{e}$), $2.32(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.2$ and $3 \times 4.0,11 \alpha-\mathrm{H}), 2.53-2.66(1$ $\mathrm{H}, \mathrm{m}, 9 \alpha-\mathrm{H}), 2.77-2.85\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e})$, $4.04\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J} 2 \times 10.5\right.$ and $\left.2 \times 7.4,17^{2}-\mathrm{H}\right), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8$, 4-H), $6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H})$ and $7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6$, $1-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 157.5$ (s, C-3), 137.9 (s, C-5), 133.3 (s, C-10), 126.3 (d, C-1), 113.5 (d, C-4), 111.6 (d, C-2), 81.0 (s, C-17), 66.0 (d, C-17 ${ }^{2}$), 55.2 ($\mathrm{q}, 3-\mathrm{OM} \mathrm{e}$), 45.9 and 45.1 (each $\mathrm{s}, \mathrm{C}-13$ and $\mathrm{C}-14), 44.1\left(\mathrm{t}, \mathrm{C}-17^{1}\right), 41.6(\mathrm{~d}, \mathrm{C}-8), 40.0\left(\mathrm{t}, \mathrm{C}-17^{3}\right), 37.3$ (d , C-9), 34.3 ($\mathrm{t}, \mathrm{C}-16$), 30.5 ($\mathrm{t}, \mathrm{C}-6$), 28.8 ($\mathrm{t}, \mathrm{C}-12$), 25.8 (t, C-15), 25.2 (t, C-11), 23.8 (t, C-7) and 13.7 ($q, \mathrm{C}-18$).

3-D emethylation (DIBAH-toluene, heat, 41 h) of compound 58 gave the corresponding ($17^{2} \mathrm{R}$)-3,17 $\alpha, 17^{2}$-triol 60, mp 277$280^{\circ} \mathrm{C}$ (from EtOAC); $[a]_{\mathrm{D}}-21$ (c 1.0 in pyridine) (Found: C, 76.6; $\mathrm{H}, 8.6 \% ; \mathrm{M}^{+}, 328 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.8 ; \mathrm{H}, 8.6 \%, \mathrm{M}$, 328).

Similarly, compound 59 was converted into the ($17^{2} \mathrm{~S}$)-3,17a,172-triol 61, mp 251-253 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}$-hexane); [$\left.a\right]_{\mathrm{D}}$ -2 (c 0.5 in pyridine) (Found: C, 77.1; H, 8.5\%; M ${ }^{+}, 328$).

3-M ethoxy-14,17 β-propano-14 β-estra-1,3,5(10)-trien-17 α-ol 63 The 17^{2}-ketone 57 ($100 \mathrm{mg}, 0.29 \mathrm{mmol}$) in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ was added to vigorously stirred ethane-1,2-dithiol ($0.1 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}$) and zinc trifluoromethanesulfonate (210 $\mathrm{mg}, 0.58 \mathrm{mmol})$ in dichloromethane ($4 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ under nitrogen. A fter 3.5 h at $20^{\circ} \mathrm{C}$, the mixture was treated with saturated aq. NaHCO_{3} and the product was isolated by extraction with CHCl_{3}. Work-up gave a foam (132 mg) which was
adsorbed on silica gel (13 g). Elution with EtOA c-toluene (1:9) gave the $17^{2}, 17^{2}$-ethylenedithio compound 62 ($102 \mathrm{mg}, 85 \%$), mp $86-90^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+8$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{M}^{+}, 416.184 . \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{~S}_{2}$ requires $\mathrm{M}, 416.184$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3598 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.94(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 2.16$ and 2.46 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.9,17^{3}-\mathrm{H}_{2}$), 2.34 and 2.7 (each $1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9$, 171- H_{2}), 2.78-2.83 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.24-3.46 ($4 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2}-$ $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.74(1 \mathrm{H}$, dd, J 8.6 and $2.8,2-\mathrm{H}$) and $7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.

A mixture of the thioketal $62(268 \mathrm{mg}, 0.64 \mathrm{mmol})$ and Raney nickel ($\sim 1 \mathrm{~g}$) in ethanol ($10 \mathrm{~cm}^{3}$) was refluxed with vigorous stirring under nitrogen. A fter 3 h , the mixture was filtered, and the filtrate was evaporated under reduced pressure to give the $14 \beta, 17 \beta$-propano compound 63 ($199 \mathrm{mg}, 95 \%$), $\mathrm{mp} 155-$ $156^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+8\left(\mathrm{c} 1.0\right.$ in CHCl_{3}) (Found: C, 81.1; H, 9.4\%; $\mathrm{M}^{+}, 326 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C, 80.9; $\mathrm{H}, 9.3 \%$; $\mathrm{M}, 326) ; v_{\text {max }} / \mathrm{cm}^{-1} 3596 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.91(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me})$, $2.31(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.6$ and $3 \times 3.6,11 \alpha-\mathrm{H}), 2.6(1 \mathrm{H}, \mathrm{br} \mathrm{td}, \mathrm{J}$ 2×11.3 and $3.6,9 \alpha-H), 2.76-2.83\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}$, 3-OM e), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.7 , $2-\mathrm{H}$) and 7.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 157.4$ (s, C-3), 138.0 (s, C-5), 133.6 (s, C-10), 126.3 (d, C-1), 113.4 (d, C-4), 111.4 (d, C-2), 82.0 (s, C-17), 55.2 ($q, 3-0 \mathrm{Me}$), 46.9 and 45.2 (each s, C-13 and C-14), 41.9 (d, C-8), 37.5 (d, C-9), 34.5 (t, $\mathrm{C}-16$), 34.2 ($\mathrm{t}, \mathrm{C}-17^{1}$), 30.6 ($\mathrm{t}, \mathrm{C}-12$), 30.2 ($\mathrm{t}, \mathrm{C}-6$), 29.2 (t , C-173), 25.9 (t, C-15), 25.2 ($\mathrm{t}, \mathrm{C}-11$), 23.7 ($\mathrm{t}, \mathrm{C}-7$), 18.8 ($\mathrm{t}, \mathrm{C}-17^{2}$) and 13.4 ($q, C-18$).

3-D emethylation (DIBA H-toluene, heat, 24 h) of compound 63 gave the corresponding $3,17 \alpha$-diol $64, \mathrm{mp} 270-271^{\circ} \mathrm{C}$ (from EtOA c); [$\alpha]_{\mathrm{D}}+9$ (c 1.0 in THF) (Found: C, 80.5; H, 9.0\%; M ${ }^{+}$, 312. $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 80.7 ; \mathrm{H}, 9.0 \% ; \mathrm{M}, 312$).

Preparation of the $14 \beta, 17 \beta$-propeno compounds 66 and 67

A stirred solution of the 17^{2}-ketone 57 ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ under nitrogen was treated with toluene-p-sulfonohydrazide ($81 \mathrm{mg}, 0.45 \mathrm{mmol}$) and trifluoroacetic acid $\left(0.016 \mathrm{~cm}^{3}\right)$. A fter 16 h at $20^{\circ} \mathrm{C}$, saturated aq. NaHCO_{3} was added to the mixture and the product (149 mg) was isolated by extraction with chloroform. Work-up and chromatography of the residue on silica gel (15 g) with EtOA c-toluene ($3: 7$) as eluent gave the 17^{2}-toluene-p-sulfonylhydrazone 65 as separable syn- and anti-isomers: isomer a ($49 \mathrm{mg}, 64 \%$), mp $154-158{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[a]_{\mathrm{D}}-3$ (c 1.0 in CHCl_{3}) (Found: M^{+}, 508.238. $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{M}, 508.239$); $v_{\text {max }} / \mathrm{cm}^{-1} 3599$, $3290,3216,1336$ and $1162 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.85(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me})$, $2.41\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{Me}\right.$), 2.72-2.82 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.75(3 \mathrm{H}, \mathrm{s}$, 3-OM e), $6.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.0,4-\mathrm{H}$), $6.69(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and 2.0 , $2-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}), 7.3\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2,3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$ and $7.79\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{2}^{\prime}-\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$; isomer b ($27 \mathrm{mg}, 36 \%$), $\mathrm{mp} 177-180^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}$-hexane); $[a]_{\mathrm{D}}-24$ (c 1.0 in CHCl_{3}) (Found: M^{+}, 508.239); $v_{\text {max }} / \mathrm{cm}^{-1} 3599,3292,3201,1336$ and 1163 ; $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}), 2.42(3 \mathrm{H}, \mathrm{s}$, 4'-M e), 2.75-2.85 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), 6.61 (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 2.9,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.9,2-\mathrm{H}), 7.21(1 \mathrm{H}, \mathrm{d}$, J $8.6,1-H), 7.32\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2,3^{\prime}-\right.$ and $\left.5^{\prime}-\mathrm{H}\right)$ and $7.84(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $8.2,2^{\prime}$ - and $6^{\prime}-\mathrm{H}$).
The syn/anti mixture of compound 65 ($76 \mathrm{mg}, 0.15 \mathrm{mmol}$) was treated with butyllithium ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; 0.5 $\left.\mathrm{cm}^{3}\right)$ in THF ($5 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ under nitrogen. A fter 1.5 h at $0^{\circ} \mathrm{C}$, the mixture was treated with further reagent $\left(0.5 \mathrm{~cm}^{3}\right)$ and then kept at $0^{\circ} \mathrm{C}$ for a further 1.5 h , whereupon the reaction was complete (TLC). A fter dilution with water to destroy excess reagent, the mixture was acidified and extracted with toluene. Work-up of the extract gave an oil (90 mg) which was chromatographed on silica gel (13.5 g) with EtOA c-toluene (1:9) to give 3 -methoxy-14,17 β-prop-171-eno-14 β-estra-1,3,5(10)-trien$17 \alpha-0166(15 \mathrm{mg}, 31 \%)$, mp 112-114 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+2$ (c 1.1 in CHCl_{3}) (Found: $\mathrm{M}^{+}, 324.209 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{M}, 324.209)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3600 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.94(3 \mathrm{H}$, d, J $0.6,13 \beta-\mathrm{Me}$), $2.18\left(1 \mathrm{H}\right.$, ddd, J 17.8, 3.9 and $1.5,17^{3}-\mathrm{H}$),
$2.34(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.9$ and $3 \times 3.5,11 \alpha-\mathrm{H}), 2.46-2.61(1 \mathrm{H}, \mathrm{br}$ td, $9 \alpha-\mathrm{H}$), 2.76-2.85 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $5.5(1 \mathrm{H}$, ddd, J 9.8, 3.9 and $\left.2.6,17^{2}-H\right), 5.75(1 \mathrm{H}$, ddd, J 9.8, 2.3 and 1.5, $\left.17^{1}-\mathrm{H}\right), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and $2.8,2-$ H) and $7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,1-\mathrm{H}) ; \delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 157.5(\mathrm{~s}, \mathrm{C}-3)$, 137.9 (s, C-5), 136.9 (d, C-171), 133.0 (s, C-10), 126.6 (d, C-1), 123.8 (d, C-17²), 113.5 (d, C-4), 111.7 (d, C-2), 82.3 (s, C-17), 55.2 ($q, 3-0 \mathrm{M} \mathrm{e}$), 46.0 and 44.5 (each $\mathrm{s}, \mathrm{C}-13$ and $\mathrm{C}-14$), 42.8 (d, $\mathrm{C}-8$), 40.0 (t, C-16), 38.6 (t, C-173), 37.8 ($\mathrm{d}, \mathrm{C}-9$), 30.6 (t, C-6), 29.2 ($\mathrm{t}, \mathrm{C}-12$), 27.1 ($\mathrm{t}, \mathrm{C}-15$), 26.4 ($\mathrm{t}, \mathrm{C}-11$), 22.8 ($\mathrm{t}, \mathrm{C}-7$) and 14.0 ($q, C-18$).

Further elution gave 3 -methoxy-14,17 β-prop-17²-eno-14 β -estra-1,3,5(10)-trien-17 α-ol 67 ($12 \mathrm{mg}, 25 \%$), mp $127-130^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}-46$ (c 0.8 in CHCl_{3}) (Found: M^{+}, 324.209); $v_{\text {max }} / \mathrm{cm}^{-1} 3600 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.91(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me})$, 2.59-2.72 (1 H , m, 9 $\alpha-\mathrm{H}$), 2.82-2.88 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.77 ($3 \mathrm{H}, \mathrm{s}$, $3-\mathrm{OM}$ e), $5.51\left(1 \mathrm{H}\right.$, ddd, J $9.6,3.8$ and $\left.2.7,17^{2}-\mathrm{H}\right), 5.88(1 \mathrm{H}$, ddd, J 9.6, 2.2 and $2.0,17^{3}-\mathrm{H}$), $6.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.72$ (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H}$) and 7.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H}$); $\delta_{\mathrm{c}}(50$ $\mathrm{M} \mathrm{Hz}) 157.5$ (s, C-3), 137.9 (s, C-5), 135.6 (d, C-173), 133.3 (s, C-10), 126.2 ($\mathrm{d}, \mathrm{C}-1$), 123.6 ($\mathrm{d}, \mathrm{C}-17^{2}$), 113.6 ($\mathrm{d}, \mathrm{C}-4$), 111.5 (d , $\mathrm{C}-2$), 81.7 ($\mathrm{s}, \mathrm{C}-17$), 55.2 ($\mathrm{q}, 3-0 \mathrm{M} \mathrm{e}$), 49.6 ($\mathrm{s}, \mathrm{C}-14$), 44.7 (s , C-13), 42.5 (t, C-1711), 38.9 ($\mathrm{d}, \mathrm{C}-8$), 37.4 ($\mathrm{d}, \mathrm{C}-9$), 36.3 (t, C-16), 30.5 (t, C-6), 30.3 (t, C-15), 27.8 (t, C-12), 25.6 (t, C-11), 23.8 (t, $\mathrm{C}-7$) and 13.2 ($\mathrm{q}, \mathrm{C}-18$).

3-D emethylation (DIBAH-toluene, heat, 25 h) of compound 66 gave the corresponding 3,17 -diol 68, mp 263-264 ${ }^{\circ} \mathrm{C}$ (from EtOA C); $[a]_{\mathrm{D}}+5$ (c 0.4 in pyridine) (Found: C, 81.0; H, 8.5\%; $\mathrm{M}^{+}, 310 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.25 ; \mathrm{H}, 8.4 \% ; \mathrm{M}, 310$).

Similarly, compound 67 was converted into the 3,17a-diol 69, $\mathrm{mp} 273-274{ }^{\circ} \mathrm{C}$ (from EtOAc); $[a]_{\mathrm{D}}-57$ (c 0.5 in pyridine) (Found: C, 81.0; H, 8.5\%, M^{+}, 310).

14-F ormylethyl-3-methoxy-14 β-estra-1,3,5(10)-trien-17-one 70

 Borane-dimethyl sulfide ($2.5 \mathrm{~cm}^{3}, 26 \mathrm{mmol}$) was added to a stirred solution of the 14β-allyl 17-ketone 54 ($1.2 \mathrm{~g}, 3.7 \mathrm{mmol}$) in THF $\left(90 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$ under nitrogen. The solution was refluxed for 2 h , cooled to $0^{\circ} \mathrm{C}$ and treated successively with aq. sodium hydroxide ($6 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 8 \mathrm{~cm}^{3}$) and hydrogen peroxide ($30 \% ; 6 \mathrm{~cm}^{3}$) and then kept at $40^{\circ} \mathrm{C}$ for 12 h . The mixture was concentrated under reduced pressure, diluted with water and the product was isolated as a crystalline solid (1.217 g) by extraction with ethyl acetateDimethyl sulfoxide ($1.5 \mathrm{~cm}^{3}, 18 \mathrm{mmol}$) in THF ($5 \mathrm{~cm}^{3}$) was added to a stirred solution of oxalyl chloride ($0.9 \mathrm{~cm}^{3}, 9 \mathrm{mmol}$) in THF (21 cm ${ }^{3}$) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen. A fter 2 min , the hydroboration product ($317 \mathrm{mg}, 0.9 \mathrm{mmol}$) in THF $\left(21 \mathrm{~cm}^{3}\right)$ was added over 5 min to the mixture which was then stirred at $-78^{\circ} \mathrm{C}$ for 45 min . Triethylamine ($5.1 \mathrm{~cm}^{3}, 36 \mathrm{mmol}$) was added to the mixture which was then stirred at $-78^{\circ} \mathrm{C}$ for 5 min before being allowed to warm to $20^{\circ} \mathrm{C}$. The mixture was concentrated under reduced pressure, diluted with water, and the product (310 mg) was isolated by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Work-up followed by flash chromatography on silica gel (31 g) with EtOA ctoluene ($3: 17$) as eluent gave the 14β-formylethyl compound 70 as a colourless oil ($220 \mathrm{mg}, 70 \%$) (Found: $\mathrm{M}^{+}, 340.203$. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$ requires M, 340.204); $v_{\text {max }} / \mathrm{cm}^{-1} 1726 \mathrm{br} ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz})$ $1.04\left(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}\right.$), 2.82-2.9 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.78(3 \mathrm{H}, \mathrm{s}$, $3-\mathrm{OM}$ e), $6.64(\mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}$), $6.73(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-$ H), $7.2(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$ and $9.74(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 2 \times 1.2, \mathrm{CHO}$).

Intramolecular reductive coupling of the 14β-formylethyl 17 ketone 70

A mixture of TiCl_{3}.(DME) $1.5(4.57 \mathrm{~g}, 13.7 \mathrm{mmol})$ and zinccopper couple ($2.66 \mathrm{~g}, 41 \mathrm{mmol}$) in freshly distilled dimethoxyethane (D M E) ($100 \mathrm{~cm}^{3}$) was refluxed with vigorous stirring for 1.5 h . The resultant black suspension was cooled to $0^{\circ} \mathrm{C}$ and compound 70 ($310 \mathrm{mg}, 0.91 \mathrm{mmol}$) in DME ($150 \mathrm{~cm}^{3}$) was added to it over 10 min with stirring. The mixture was then allowed to warm to $20^{\circ} \mathrm{C}$. A fter 4 h at $20^{\circ} \mathrm{C}$, the reaction was
complete (TLC), and aq. $\mathrm{K}_{2} \mathrm{CO}_{3}\left(20 \%, 100 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then stirred for 12 h . A fter concentration under reduced pressure, the mixture was diluted with water and the product was isolated by extraction with EtOAc. Work-up and crystallisation of the solid residue (295 mg) from EtOA c gave $\quad\left(17^{1} \mathrm{R}\right)$-3-methox y-14,17 β-propano-14 β-estra-1,3,5(10)-triene-17a,171-diol 71 ($146 \mathrm{mg}, 50 \%$), mp 177-181 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+18$ (c 1.0 in THF) (Found: $\mathrm{M}^{+}, 342.217 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3}$ requires M , $342.219)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3600$ and $3450 \mathrm{br} ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.88(3 \mathrm{H}, \mathrm{s}$, $13 \beta-\mathrm{M} \mathrm{e}), 2.31(1 \mathrm{H}, \mathrm{br} d q, \mathrm{~J} 12.6$ and $3 \times 3.3,11 \alpha-\mathrm{H}), 2.6(1 \mathrm{H}$, brtd, J 2×10.8 and 3.1, $9 \alpha-\mathrm{H}), 2.75-2.85\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77$ ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $3.99\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 2 \times 8.0,17^{1}-\mathrm{H}\right.$), $6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 2.6, 4-H) , $6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.6,2-\mathrm{H})$ and $7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.6, 1-H).

Chromatography of the mother-liquor residue on silica gel (16 g) with EtOA c-toluene (3:7) gave starting material 70 (23 mg) followed by ($17^{1} \mathrm{~S}$)-3-methoxy-14,17 β-propano-14 β-estra-1,3,5(10)-triene-17a,171-diol 72 ($14 \mathrm{mg}, 4 \%$), mp $184-187^{\circ} \mathrm{C}$ (from EtOA c); $[a]_{\mathrm{D}}+21$ (c 1.0 in THF) (Found: $\mathrm{M}^{+}, 342.217$) $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.13(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 2.53-2.67(1 \mathrm{H}, \mathrm{m}, 9 \alpha-\mathrm{H})$, 2.77-2.85 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), $3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), $3.84(1 \mathrm{H}$, obsc d, J 6.2, 17¹-H), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and $2.8,2-\mathrm{H}$) and $7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,1-\mathrm{H})$; and the ($17^{1} \mathrm{R}$)$17 \alpha, 17^{1}$-diol 71 ($10 \mathrm{mg}, 3 \%$).

$3-M$ ethoxy-14,17 β-propano-14 β-estra-1,3,5(10)-triene-17 $\alpha, 17^{1-}$. diol 17^{1}-acetates 73 and 74

(a) Treatment of the ($\left.17^{1} \mathrm{R}\right)-17 \alpha, 17^{1}$-diol 71 with acetic anhydride in pyridine at $20^{\circ} \mathrm{C}$ gave the corresponding 17^{1} acetate 73, mp 175-178 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+27$ (c 1.0 in CHCl_{3}) (Found: C, $74.8 ; \mathrm{H}, 8.3 \%$; M^{+}, 384. $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}$ requires C, 75.0; H, 8.4\%; M, 384); $v_{\text {max }} / \mathrm{cm}^{-1} 3591$ and 1709 $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.94(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 2.09\left(3 \mathrm{H}, \mathrm{s}, 17^{1}-\mathrm{OA} \mathrm{C}\right), 2.3$ ($1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 12.9$ and $3 \times 3.6,11 \alpha-\mathrm{H}$), $2.59(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11.2$ and 4.5, $9 \alpha-\mathrm{H}), 2.76-2.84\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.77(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM} \mathrm{e}$), 5.32 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 9.8,6.8$ and $1.8,1^{1}-\mathrm{H}$), $6.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8$, $4-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.7$ and $2.8,2-\mathrm{H}$) and $7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7$, $1-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}$) 172.0 (s, OCOM e), 157.5 (s, C-3), 137.8 (s, C-5), 133.3 (s, C-10), 126.4 (d, C-1), 113.5 (d, C-4), 111.5 (d, C-2), 83.2 (s, C-17), 75.4 (d, C-171), 55.2 ($q, 3-0 \mathrm{M} \mathrm{e}$), 46.2 and 46.1 (each s, C-13 and C-14), 41.6 (d, C-8), 37.4 (d, C-9), 30.5 (t C-6), 30.5 ($\mathrm{t}, \mathrm{C}-16$), 29.4 (t, C-12), 28.0 ($\mathrm{t}, \mathrm{C}-17^{2}$), 25.7 (t , $\mathrm{C}-17^{3}$), 25.6 ($\mathrm{t}, \mathrm{C}-15$), 25.2 ($\mathrm{t}, \mathrm{C}-11$), 23.7 (t, C-7), 21.4 ($\mathrm{q}, 17^{1}$ OCOM e) and 13.0 ($q, \mathrm{C}-18$).
(b) Similarly prepared was the 17^{1}-acetate $\mathbf{7 4}, \mathrm{mp} 181$ $184{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$); $[a]_{\mathrm{D}}+36$ (c 1.0 in CHCl_{3}) (Found: C, 75.2; H , 8.2\%; $\mathrm{M}^{+}, 384$); $v_{\max } / \mathrm{cm}^{-1} 3585$ and 1727; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.08(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{M} \mathrm{e}), 2.09\left(3 \mathrm{H}, \mathrm{s}, 17^{1}-\mathrm{OA} \mathrm{C}\right), 2.28$ ($1 \mathrm{H}, \mathrm{br}$ dq, J 13.3 and $3 \times 3.4,11 \alpha-\mathrm{H}$), $2.62(1 \mathrm{H}, \mathrm{br}$ td, J 2×10.7 and $3.8,9 \alpha-\mathrm{H}), 2.78-2.86\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.78(3 \mathrm{H}, \mathrm{s}$, 3-OM e), 4.9 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.5,17^{1}-\mathrm{H}$), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}), 6.72$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.7,2-\mathrm{H}$) and $7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}) 8.6,1-\mathrm{H}) ; \delta_{\mathrm{c}}(50$ MHz) 171.7 (s, 17^{1}-OCOM e), 157.4 (s, C-3), 137.8 (s, C-5) 133.4 (s, C-10), 126.3 (d, C-1), 113.5 (d, C-4), 111.5 (d, C-2), 82.7 (s, C-17), 78.2 (d, C-171), 55.2 ($q, 3-0 \mathrm{M} \mathrm{e}$), 46.7 ($\mathrm{s}, \mathrm{C}-14$) 45.2 (s, C-13), 41.2 (d, C-8), 37.3 (d, C-9), 33.4 (t, C-16), 30.5 (t C-6), 29.5 (t, C-12), 27.8 (t, C-173), 25.1 (t, C-15), 24.8 (t, C-11), 24.0 (t, C-17 ${ }^{2}$), 23.7 (t, C-7), 21.5 ($\left.q, 17^{1}-0 C O M ~ e\right) ~ a n d ~ 14.5(q$, $\mathrm{C}-18$).

14,17 β-P ropano-14 β-estra-1,3,5(10)-triene-3,17 $3,17^{1}$-triols 75

 and 76(a) 3-D emethylation (DIBAH-toluene, heat, 24 h) of the ($17^{1} \mathrm{R}$)-17a, 17^{1}-diol 71 gave the corresponding ($17^{1} \mathrm{R}$)-3,17a,171-triol 75, mp 269-270 ${ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: C 76.6; $\mathrm{H}, 8.8 \% ; \mathrm{M}^{+}, 328 . \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 76.8 ; \mathrm{H}, 8.6 \%$; M 328).
(b) Similarly prepared was the ($1^{1} \mathrm{~S}$) $-3,17 \alpha, 17^{1}$-triol 76 , mp 251-254 ${ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 77.0; H, 8.5\%; M ${ }^{+}$ 328).

17 α-H ydroxy-3-methoxy-14,17 β-propano-14 β-estra-1,3,5(10)-

 trien-17 ${ }^{1}$-one 77Dimethyl sulfoxide ($0.5 \mathrm{~cm}^{3}, 6 \mathrm{mmol}$) in THF ($1.4 \mathrm{~cm}^{3}$) was added to a stirred solution of oxalyl chloride ($0.3 \mathrm{~cm}^{3}, 3 \mathrm{mmol}$) in THF ($7 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under nitrogen. A fter 2 min , the $17 \alpha, 17^{1}$-diol 71 ($100 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added over 5 min to the mixture which was then stirred at $-78^{\circ} \mathrm{C}$ for 30 min . A fter this triethylamine ($1.7 \mathrm{~cm}^{3}, 12 \mathrm{mmol}$) was added to the mixture which was then stirred at $-78^{\circ} \mathrm{C}$ for 5 min before being allowed to warm to $20^{\circ} \mathrm{C}$. The mixture was then diluted with water and extracted with EtOAc. Work-up of the extract gave a residue (360 mg) which was chromatographed on silica gel (15 g) with EtOA c-toluene ($3: 17$) as eluent, to give the 17^{1}-ketone 77 (62 $\mathrm{mg}, 63 \%$), $\mathrm{mp} 153-156^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-\mathrm{M} \mathrm{eOH}$); $[a]_{\mathrm{D}}+6$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{C}, 77.4 ; \mathrm{H}, 8.4 \% ; \mathrm{M}^{+}$, 340. $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C, 77.6; H, 8.3\%; M, 340); $v_{\text {max }} / \mathrm{cm}^{-1} 3480$ and 1706; $\delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz}) 0.74(3 \mathrm{H}, \mathrm{s}, 13 \beta-\mathrm{Me}$), $1.8(1 \mathrm{H}, q d, \mathrm{~J} 3 \times 10.3$ and 4.1$)$, $2.26(1 \mathrm{H}, \mathrm{tdd}, \mathrm{J} 2 \times 13.3,4.5$ and 2.5$), 2.36(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 13.4$ and $3 \times 3.8,11 \alpha-\mathrm{H}), 2.48\left(1 \mathrm{H}\right.$, ddd, J $17.1,7.7$ and $1.4,17^{2}-\mathrm{H}_{\text {exo }}$), $2.56\left(1 \mathrm{H}, \mathrm{m}, \mathrm{W} 38,17^{2}-\mathrm{H}_{\text {endo }}\right), 2.65(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 2 \times 11$ and 4.1 , $9 \alpha-\mathrm{H}), 2.82-2.88\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.69\left(1 \mathrm{H}, \mathrm{s}\right.$, exch. by $\mathrm{D}_{2} \mathrm{O}$, $17 \alpha-\mathrm{OH}$), 3.77 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), $6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.7,4-\mathrm{H}$), 6.73 (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and $2.7,2-\mathrm{H}$) and $7.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5,1-\mathrm{H})$.

H ydride reduction of the 17^{1}-ketone 77

Treatment of compound 77 ($113 \mathrm{mg}, 0.33 \mathrm{mmol}$) in THF (8 cm^{3}) at $20^{\circ} \mathrm{C}$ with LAH ($63 \mathrm{mg}, 1.66 \mathrm{mmol}$) for 45 min , followed by destruction of the excess of reagent with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, and extraction with EtOAc gave material (100 mg , 88%) which was crystallised from EtOAc to give the ($1^{1} \mathrm{~S}$) $17 \alpha, 17^{1}$-diol 72.

(1715)-3-M ethoxy-14,17 β-prop-17 ${ }^{2}$-eno-14 β-estra-1,3,5(10)-triene- $17 a, 17^{1}$-diol 78

Sodium borohydride ($74 \mathrm{mg}, 1.95 \mathrm{mmol}$) was added to a stirred mixture of the enone 53 ($219 \mathrm{mg}, 0.65 \mathrm{mmol}$) and cerium(III) chloride heptahydrate ($480 \mathrm{mg}, 1.3 \mathrm{mmol}$) in methanol ($10 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A fter 45 min at $0^{\circ} \mathrm{C}$, the mixture was treated with saturated aq. NaHCO_{3}, and the product (208 mg) was isolated by extraction with EtOAc. Work-up of the extract and chromatography of the residue on silica gel (35 g) with EtOA c-hexane (7:13) as eluent gave the diol 78 ($209 \mathrm{mg}, 95 \%$), mp $170-172^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane); $[a]_{\mathrm{D}}+19$ (c 1.0 in CHCl_{3}) (Found: C , 77.6; $\mathrm{H}, 8.4 \% ; \mathrm{M}^{+}, 340 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.6 ; \mathrm{H}, 8.3 \%$; M , $340) ; v_{\max } / \mathrm{cm}^{-1} 3607$ and $3542 ; \delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.94(3 \mathrm{H}$, s, $13 \beta-\mathrm{Me}$), 2.82-2.94 ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}$), 3.76 ($3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OM}$ e), 3.92 (1 H, dd, J 4.0 and $\left.1.0,17^{1}-\mathrm{H}\right), 5.77\left(1 \mathrm{H}\right.$, dd, J 9.7 and $4.0,17^{2}-\mathrm{H}$), 6.14 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.7$ and $1.0,17^{3}-\mathrm{H}$), $6.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.8,4-\mathrm{H}$), 6.73 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6$ and $2.8,2-\mathrm{H}$) and $7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6,1-\mathrm{H})$.

The derived ($1^{1} \mathrm{~S}$) $-3,17 \alpha, 17^{1}$-triol 79 had mp $249-253^{\circ} \mathrm{C}$ (from $\mathrm{M} \mathrm{e}_{2} \mathrm{CO}$-hexane); $[a]_{\mathrm{D}}-28$ (c 1.0 in pyridine) (Found: C, 76.9; $\mathrm{H}, 7.8 \% ; \mathrm{M}^{+}, 326 . \mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.3 ; \mathrm{H}, 8.0 \% ; \mathrm{M}$, 326).

A cknowledgements

We thank the Foundation for Research Development, the University of Cape Town and Schering A G for financial and material support, and AECI for a scholarship (to P. G. M .). We thank Dr K. Jaworski for performing some experimental work in the $14 \alpha, 17 \alpha$-propano series.

R eferences

1 J. R. Bull and R. I. Thomson, J. Chem. Soc., Perkin Trans. 1, 1990, 241.

2 J. R. Bull, R. I. Thomson, H. Laurent, H. Schröder and R. W iechert, G er. Pat. DE 3628 189, 1988 (Chem. A bstr., 1988, 109, 129451w).

3 J. R. Bull, P. G. M ountford, G. K irsch, G. N eef, A. M üller-Fahrnow and R. W iechert, Tetrahedron, 1994, 50, 6363
4 G. K irsch, G. N eef, H. L aurent, R . W iechert, J. R . Bull, P. E sperling, W. Elger and S. Beier, Ger. Pat. DE 3939 894, 1989 (Chem. A bstr., 1991, 115, 136493p).
5 A preliminary account of the synthesis of 17 and related compounds has been published: J. R. Bull, L. M. Steer and K . Jaworski, Synlett, 1994, 709.
6 An aspect of the synthetic work directed to the $14 \beta, 17 \beta$-propano series has been described in a preliminary communication: J. R . Bull and P. G. M ountford, Synlett, 1994, 711.
7 J. R. Bull and K. Bischofberger, J. Chem. Soc., Perkin Trans. 1, 1991, 2859.

8 M. V. Bhatt and S. U. K ulkarni, Synthesis, 1983, 249 and references cited therein.
9 J. R. Bull, K. Bischofberger, R. I. Thomson, J. L. M. Dillen and P. H. van Rooyen, J. C hem. Soc., Perkin Trans. 1, 1992, 2545.

10 H. K unzer, M. Strahnke, G. Sauer and R. Wiechert, Tetrahedron L ett., 1991, 32, 1949.
11 K. S. A twal, S. P. Sahoo, T. Y. R . Tsai and K . W iesner, H eterocycles, 1982, 19, 641.
12 W. A. Szarek, A . Zamojski, K . Tiwari and E. R. Ison, Tetrahedron Lett., 1986, 27, 3827.
13 P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis,

Pergamon Press, Oxford, 1992, ch. 2 and 3, and references cited therein.
14 A nalogous stereoselectivity during conjugate addition to structurally related systems is precedented: E. Winterfeldt, Chem. R ev., 1993, 93, 827 and references cited therein.
15 This and related oxidative cleavage reactions leading to 14β-formyl 19-norsteroids have been described in a preliminary communication: J. R. Bull and C. H oadley, Tetrahedron Lett., 1994, 35, 6171.

16 R. Tsuji, in Comprehensive Organic Synthesis, eds. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 7, ch. 3.4 and references cited therein.
17 E. J. Corey and K. Shimuji, J. A m. Chem. Soc., 1983, 105, 1662.
18 J. E. M cM urry, T. Lectka and J. G. Rico, J. Org. Chem., 1989, 54, 3748.

19 Receptor affinity assays were performed at the Institute of M edicinal Chemistry, Schering A G , Berlin.
20 K. Lubke, E. Schillinger and M. Topert, A ngew. Chem., Int. Ed. Engl., 1976, 16, 741.

Paper 6/06242C
R eceived 10th September 1996 A ccepted 21st N ovember 1996

